Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.