随着航空航天技术的快速发展,封闭腔体内的无线能量传输(Wireless Power Transmission,WPT)技术开始受到广泛关注.基于频率控制的WPT技术,可实现对电大封闭腔体(103×λ3)内的多方位传感器进行可控和高效的无线充电.电大腔体内的电...随着航空航天技术的快速发展,封闭腔体内的无线能量传输(Wireless Power Transmission,WPT)技术开始受到广泛关注.基于频率控制的WPT技术,可实现对电大封闭腔体(103×λ3)内的多方位传感器进行可控和高效的无线充电.电大腔体内的电场分布对频率的变化敏感,利用频率变化实现对封闭腔体场分布控制.实验结果表明,在S波段的1 m3腔体最高WPT传输效率为96.6%.设计的宽带整流电路实测整流效率最高为80%,整流效率高于50%的带宽为1.65 GHz.在2.401~2.495 GHz频段实现控制双接收机的不同工作状态,展现其在航空航天器等封闭空间中为传感器无线供电的应用前景.展开更多
In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted ...In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.展开更多
In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify...In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify the output voltage of the rectenna and transferred it to a dc load. As a starting point, optimization and parameter analysis offer a novel and small antenna for the 2.45 GHz ISM band that precisely matched. Moreover, the fabricated prototype has measured and simulated results have confirmed the antenna’s accuracy in the reflection coefficient. Second, a highly efficient antenna may effectively harvest the electrical energy by combining with the two-stage voltage multiplier circuit presented at the ISM band. Furthermore, the proposed rectenna has the optimum performance compared to state of art rectennas in terms of efficiency, power range, and impedance bandwidth showing pronounced achievement and increasing the DC output power significantly. The prototype is fabricated and experimentally tested to confirm the concept. Measurement results show that the proposed rectenna can be used for RF energy harvesting applications.展开更多
A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwi...A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.展开更多
针对城市窨井数量大、位置分散、安全事故频发、管理困难等问题,设计出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的井下数据无线采集终端。终端采用低功耗STM32芯片作为主控制器,NB-IoT无线通信模块采用BC26模组...针对城市窨井数量大、位置分散、安全事故频发、管理困难等问题,设计出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的井下数据无线采集终端。终端采用低功耗STM32芯片作为主控制器,NB-IoT无线通信模块采用BC26模组,数据采集终端具有自动采集数据、主动预警、初始蓝牙配置等功能。实验结果表明:所设计的无线采集终端功耗低、稳定性高,让城市井盖管理更加智能化,让故障检修更加便捷化,提高城市管理的智能化水平。展开更多
A novel multi-band end-fire antenna array was designed, fabricated, and characterized. Analytical calculations were carried out to determine the critical antenna dimensions and the design was optimized using a 3D elec...A novel multi-band end-fire antenna array was designed, fabricated, and characterized. Analytical calculations were carried out to determine the critical antenna dimensions and the design was optimized using a 3D electromagnetic finite-element solver. The measured results were in good agreement with the designed results. The proposed antenna array exhibits multi-band capabilities which can be potentially used for applications that require a multi-band end-fire radiation pattern.展开更多
This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly ...This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.展开更多
文摘为了探索高频段室内无线体域网通信的可行性,对11 GHz室内无线体域网的传播特性进行了测量与研究。基于大量的测量数据,给出了11 GHz频段室内无线体域网的路径损耗、阴影效应与均方根时延扩展的统计特性。针对体对体通信时人体相对角度变化的场景,提出了一种具有相对角度影响的路径损耗模型,该模型利用了与身体角度相关的路径损耗指数、浮动截距以及身体角度因子修正相对角度变化引入的路径损耗。为了验证模型的适用性,对比分析了在小型空教室和大型会议室两种不同场景下相对角度变化对信道传播特性的影响。研究结果表明:在收发端距离固定的情况下,路径损耗指数、浮动截距和由相对角度引起的路径损耗(Path Loss caused by Relative Angle,PLRA)均与相对角度具有三角函数关系;在收发端相对角度固定时,PLRA与收发端距离无关,仅与相对角度有关。上述研究结果可以为11 GHz频段在未来室内无线体域网的使用提供理论基础与实践依据。
文摘In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.
文摘In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify the output voltage of the rectenna and transferred it to a dc load. As a starting point, optimization and parameter analysis offer a novel and small antenna for the 2.45 GHz ISM band that precisely matched. Moreover, the fabricated prototype has measured and simulated results have confirmed the antenna’s accuracy in the reflection coefficient. Second, a highly efficient antenna may effectively harvest the electrical energy by combining with the two-stage voltage multiplier circuit presented at the ISM band. Furthermore, the proposed rectenna has the optimum performance compared to state of art rectennas in terms of efficiency, power range, and impedance bandwidth showing pronounced achievement and increasing the DC output power significantly. The prototype is fabricated and experimentally tested to confirm the concept. Measurement results show that the proposed rectenna can be used for RF energy harvesting applications.
文摘A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.
文摘针对城市窨井数量大、位置分散、安全事故频发、管理困难等问题,设计出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的井下数据无线采集终端。终端采用低功耗STM32芯片作为主控制器,NB-IoT无线通信模块采用BC26模组,数据采集终端具有自动采集数据、主动预警、初始蓝牙配置等功能。实验结果表明:所设计的无线采集终端功耗低、稳定性高,让城市井盖管理更加智能化,让故障检修更加便捷化,提高城市管理的智能化水平。
文摘A novel multi-band end-fire antenna array was designed, fabricated, and characterized. Analytical calculations were carried out to determine the critical antenna dimensions and the design was optimized using a 3D electromagnetic finite-element solver. The measured results were in good agreement with the designed results. The proposed antenna array exhibits multi-band capabilities which can be potentially used for applications that require a multi-band end-fire radiation pattern.
文摘This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.