Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parit...Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parity check(LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate(BER) performance of an on-off keying(OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.展开更多
This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, a...This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.展开更多
Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multipl...Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.展开更多
The lack of closed-form expressions of the mutual information for discrete constellations has limited its uses for analyzing reliable communication over wireless fading channels.In order to address this issue,this pap...The lack of closed-form expressions of the mutual information for discrete constellations has limited its uses for analyzing reliable communication over wireless fading channels.In order to address this issue,this paper proposes analytically-tractable lower bounds on the mutual information based on Arithmetic-Mean-Geometric-Mean(AMGM)inequality.The new bounds can apply to a wide range of discrete constellations and reveal some insights into the rate behavior at moderate to high Signal-to-Noise Ratio(SNR)values.The usability of the bounds is further demonstrated to approximate the optimum pilot overhead in stationary fading channels.展开更多
We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high pa...We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high packet reception rate as well as a basic packet-level communication interface. In outdoor tests, the packet reception rate is close to 100% within 800 ft and is reasonably good up to 1100 ft. This is made possible by using error correction code and a reliable transport layer. Our implementation also allows us to choose a fre-quency among multiple channels. By using multiple frequencies as well as a reliable transport layer, we can achieve a high packet reception rate by paying additional retransmission time when collisions increase with additional sensor nodes.展开更多
为了研究不同码型的卷积码在水下湍流信道中的误码率(BER)性能,采用接受-拒绝采样模拟湍流信道乘性干扰,并选择二进制相移键控(BPSK)调制方式,建立Gamma-Gamma湍流信道通信系统仿真模型。仿真结果表明:在不同强度的湍流信道中,采用卷积...为了研究不同码型的卷积码在水下湍流信道中的误码率(BER)性能,采用接受-拒绝采样模拟湍流信道乘性干扰,并选择二进制相移键控(BPSK)调制方式,建立Gamma-Gamma湍流信道通信系统仿真模型。仿真结果表明:在不同强度的湍流信道中,采用卷积码编码均能提升系统的BER性能;卷积码的码率越小,系统BER性能提升越显著;随着信噪比(SNR)增大,记忆深度越长,系统BER下降速度越快;采用软译码比采用硬译码时增益至少提升2.82 d B;卷积码的解码不仅受当前信息的影响,还与之前的码元信息有关。展开更多
基金Project supported by the National Key Basic Research Program of China(Grant No.2014CB339803)the National High Technology Research and Development Program of China(Grant No.2011AA010205)+4 种基金the National Natural Science Foundation of China(Grant Nos.61131006,61321492,and 61204135)the Major National Development Project of Scientific Instrument and Equipment(Grant No.2011YQ150021)the National Science and Technology Major Project(Grant No.2011ZX02707)the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciencesthe Shanghai Municipal Commission of Science and Technology(Grant No.14530711300)
文摘Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parity check(LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate(BER) performance of an on-off keying(OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.
文摘This paper proposes an adaptive joint source and channel coding scheme for H.264 video multicast over wireless LAN which takes into account the user topology changes and varying channel conditions of multiple users, and dynamically allocates available bandwidth between source coding and channel coding, with the goal to optimize the overall system performance. In particular, source resilience and error correction are considered jointly in the scheme to achieve the optimal performance. And a channel estimation algorithm based on the average packet loss rate and the variance of packet loss rate is proposed also. Two overall performance criteria for video multicast are investigated and experimental results are presented to show the improvement obtained by the scheme.
文摘Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.
文摘The lack of closed-form expressions of the mutual information for discrete constellations has limited its uses for analyzing reliable communication over wireless fading channels.In order to address this issue,this paper proposes analytically-tractable lower bounds on the mutual information based on Arithmetic-Mean-Geometric-Mean(AMGM)inequality.The new bounds can apply to a wide range of discrete constellations and reveal some insights into the rate behavior at moderate to high Signal-to-Noise Ratio(SNR)values.The usability of the bounds is further demonstrated to approximate the optimum pilot overhead in stationary fading channels.
文摘We present a network stack implementation for a wireless sensor platform based on a byte-level radio. The network stack provides error-correction code, multi-channel capability and reliable communication for a high packet reception rate as well as a basic packet-level communication interface. In outdoor tests, the packet reception rate is close to 100% within 800 ft and is reasonably good up to 1100 ft. This is made possible by using error correction code and a reliable transport layer. Our implementation also allows us to choose a fre-quency among multiple channels. By using multiple frequencies as well as a reliable transport layer, we can achieve a high packet reception rate by paying additional retransmission time when collisions increase with additional sensor nodes.
文摘为了研究不同码型的卷积码在水下湍流信道中的误码率(BER)性能,采用接受-拒绝采样模拟湍流信道乘性干扰,并选择二进制相移键控(BPSK)调制方式,建立Gamma-Gamma湍流信道通信系统仿真模型。仿真结果表明:在不同强度的湍流信道中,采用卷积码编码均能提升系统的BER性能;卷积码的码率越小,系统BER性能提升越显著;随着信噪比(SNR)增大,记忆深度越长,系统BER下降速度越快;采用软译码比采用硬译码时增益至少提升2.82 d B;卷积码的解码不仅受当前信息的影响,还与之前的码元信息有关。