In underwater optical wireless communication(UOWC),a channel is characterized by abundant scattering/absorption effects and optical turbulence.Most previous studies on UOWC have been limited to scattering/absorption e...In underwater optical wireless communication(UOWC),a channel is characterized by abundant scattering/absorption effects and optical turbulence.Most previous studies on UOWC have been limited to scattering/absorption effects.However,experiments in the literature indicate that underwater optical turbulence(UOT)can cause severe degradation of UOWC performance.In this paper,we characterize an UOWC channel with both scattering/absorption and UOT taken into consideration,and a spatial diversity receiver scheme,say a singleinput–multiple-output(SIMO) scheme,based on a light-emitting-diode(LED) source and multiple detectors is proposed to mitigate deep fading.The Monte Carlo based statistical simulation method is introduced to evaluate the bit-error-rate performance of the system.It is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range.展开更多
基金supported by the National Key Basic Research Program of China (Grant No.2013CB329201)the National Natural Science Foundation of China (Grant Nos.61171066 and 61471332)the State Key Laboratory of Robotics
文摘In underwater optical wireless communication(UOWC),a channel is characterized by abundant scattering/absorption effects and optical turbulence.Most previous studies on UOWC have been limited to scattering/absorption effects.However,experiments in the literature indicate that underwater optical turbulence(UOT)can cause severe degradation of UOWC performance.In this paper,we characterize an UOWC channel with both scattering/absorption and UOT taken into consideration,and a spatial diversity receiver scheme,say a singleinput–multiple-output(SIMO) scheme,based on a light-emitting-diode(LED) source and multiple detectors is proposed to mitigate deep fading.The Monte Carlo based statistical simulation method is introduced to evaluate the bit-error-rate performance of the system.It is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range.