期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Scavenging Microwave Wireless Power:A Unified Model,Rectenna Design Automation,and Cutting-Edge Techniques
1
作者 Si-Ping Gao Jun-Hui Ou +1 位作者 Xiuyin Zhang Yongxin Guo 《Engineering》 SCIE EI CAS CSCD 2023年第11期32-48,共17页
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas... While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology. 展开更多
关键词 Microwave wireless power transfer Microwave wireless energy harvesting Unified Rectifier model Automated rectenna design Emerging rectenna techniques
下载PDF
A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications
2
作者 Tao Zhang Cheng-Hui Li +7 位作者 Wenbo Li Zhen Wang Zhongya Gu Jiapu Li Junru Yuan Jun Ou-Yang Xiaofei Yang Benpeng Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期31-45,共15页
Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.How... Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.However,current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency,which seriously hinder their widespread applications.In this study,using a self-healing polydimethylsiloxane(PDMS,Fe-Hpdca-PDMS)and carbon nanotube composite,a flexible optoacoustic patch is developed,which possesses the self-healing capability at room temperature,and can even recover from damage induced by cutting or laser irradiation.Moreover,this patch can generate high-intensity ultrasound(>25 MPa)without the focusing structure.The laser damage threshold is greater than 183.44 mJ cm^(-2),and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66×10^(-3),compared with other carbon-based nanomaterials and PDMS composites.This patch is also been successfully examined in the application of acoustic flow,thrombolysis,and wireless energy harvesting.All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications. 展开更多
关键词 Optoacoustic Self-healing PDMS Acoustic flow THROMBOLYTIC wireless energy harvesting
下载PDF
Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System
3
作者 CHANG Mingyang HAN Jiaqi +4 位作者 MA Xiangjin XUE Hao WU Xiaonan LI Long CUI Tiejun 《ZTE Communications》 2022年第2期48-62,共15页
Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous... Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined. 展开更多
关键词 programmable metasurface simultaneously wireless information and power transfers wireless energy harvesting wireless power transfer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部