In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on en...Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on energy efficiency. This work seeks to develop an improved mobility conscious medium access control scheme for wireless sensor networks with a view to enhance energy conservation on mobile sensor nodes. On this note, mobility patterns of different scenarios are modelled using Gauss Markov Mobility Model (GMMM) to determine the position and distance of the sensor nodes and how they are correlated in time.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
As wireless sensor network becomes pervasive, new requirements have been continuously emerged. How-ever, the most of research efforts in wireless sensor network are focused on energy problem since the nodes are usuall...As wireless sensor network becomes pervasive, new requirements have been continuously emerged. How-ever, the most of research efforts in wireless sensor network are focused on energy problem since the nodes are usually battery-powered. Among these requirements, real-time communication is one of the big research challenges in wireless sensor networks because most of query messages carry time information. To meet this requirement, recently several real-time medium access control protocols have been proposed for wireless sensor networks in the literature because waiting time to share medium on each node is one of main source for end-to-end delay. In this paper, we first introduce the specific requirement of wireless sensor real-time MAC protocol. Then, a collection of recent wireless sensor real-time MAC protocols are surveyed, classified, and described emphasizing their advantages and disadvantages whenever possible. Finally we present a dis-cussion about the challenges of current wireless sensor real-time MAC protocols in the literature, and show the conclusion in the end.展开更多
Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are in...Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are interested in the study and the proposal of a solution allowing distributed sensor nodes to communicate with each other in an optimal way adapted to the specific application constraints. More precisely, we want to build a wireless network that consists of several short range sensor nodes exchanging data between them according to a communication protocol at MAC (Medium Access Control) level. This protocol must be able to optimize energy consumption, transmission time and loss of information. To achieve this objective, we have analyzed the advantages and the limitations of WSN (Wireless Sensor Network) technologies and communication protocols currently used in relation to the requirements of our application. Then we proposed a deterministic, adaptive and energy saving medium access method based on the IEEE 802.15.4 physical layer and a mesh topology. It ensures the message delivery time with strongly limited collision risk due to the spatial reuse of medium in the two-hop neighbourhood. This proposal was characterized by modelling and simulation using OPNET network simulator. Finally we implemented the proposed mechanisms on hardware devices and deployed a sensors network in real situation to verify the accuracy of the model and evaluate the proposal according to different test configurations.展开更多
In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC pr...In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.展开更多
TCP performance degrades when end-to-end connections extend over wireless links which are characterized by high Bit Error Rate and intermittent connectivity. Such degradation is mainly accounted for TCP’s unnecessary...TCP performance degrades when end-to-end connections extend over wireless links which are characterized by high Bit Error Rate and intermittent connectivity. Such degradation is mainly accounted for TCP’s unnecessary congestion control actions while attempting TCP loss recovery. Several independent link loss recovery approaches are proposed by researchers to reduce number of losses visible at TCP. In this paper we first presented a survey of loss mitigation techniques at wireless link layer. Secondly performance evaluation for TCP through Type 0 Automatic Retransmission Request mechanism in erroneous Wireless LAN is presented. In particular, simulations are performed taking into account the wireless errors introduced over IEEE 802.11 link using a well-established 2-State Markov model. TCP performance is evaluated under different settings for maximum link retransmissions allowed for each frame. Simulation results show that, link retransmission improves TCP performance by reducing losses perceived at TCP sender. However, such improvement is often associated with adverse effect on other TCP parameters that may cost a lot in return under extreme network conditions. In this paper an attempt is made to observe impact of link retransmissions on the performance of multiple TCP flows competing with each other. The analysis presented in this paper signifies the scope for maximizing TCP’s throughput at the least possible cost.展开更多
Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to...Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to coexist in an area and share the same channel in order to provide healthcare services to different patients. This causes severe interference between WBANs that could significantly reduce the network throughput and increase the amount of power consumed by sensors placed on the body. There-fore, an efficient channel-resource allocation scheme in the medium access control (MAC) layer is crucial. In this paper, we devel-op a centralized MAC layer resource allocation scheme for a WBAN. We focus on mitigating the interference between WBANs and reducing the power consumed by sensors. Channel and buffer state are reported by smartphones deployed in each WBAN, and channel access allocation is performed by a central controller to maximize network throughput. Sensors have strict limitations in terms of energy consumption and computing capability and cannot provide all the necessary information for channel allocation in a timely manner. This deteriorates network performance. We exploit the temporal correlation of the body area channel in order to minimize the number of channel state reports necessary. We view the network design as a partly observable optimization prob-lem and develop a myopic policy, which we then simulate in Matlab.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
文摘Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on energy efficiency. This work seeks to develop an improved mobility conscious medium access control scheme for wireless sensor networks with a view to enhance energy conservation on mobile sensor nodes. On this note, mobility patterns of different scenarios are modelled using Gauss Markov Mobility Model (GMMM) to determine the position and distance of the sensor nodes and how they are correlated in time.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
文摘As wireless sensor network becomes pervasive, new requirements have been continuously emerged. How-ever, the most of research efforts in wireless sensor network are focused on energy problem since the nodes are usually battery-powered. Among these requirements, real-time communication is one of the big research challenges in wireless sensor networks because most of query messages carry time information. To meet this requirement, recently several real-time medium access control protocols have been proposed for wireless sensor networks in the literature because waiting time to share medium on each node is one of main source for end-to-end delay. In this paper, we first introduce the specific requirement of wireless sensor real-time MAC protocol. Then, a collection of recent wireless sensor real-time MAC protocols are surveyed, classified, and described emphasizing their advantages and disadvantages whenever possible. Finally we present a dis-cussion about the challenges of current wireless sensor real-time MAC protocols in the literature, and show the conclusion in the end.
文摘Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are interested in the study and the proposal of a solution allowing distributed sensor nodes to communicate with each other in an optimal way adapted to the specific application constraints. More precisely, we want to build a wireless network that consists of several short range sensor nodes exchanging data between them according to a communication protocol at MAC (Medium Access Control) level. This protocol must be able to optimize energy consumption, transmission time and loss of information. To achieve this objective, we have analyzed the advantages and the limitations of WSN (Wireless Sensor Network) technologies and communication protocols currently used in relation to the requirements of our application. Then we proposed a deterministic, adaptive and energy saving medium access method based on the IEEE 802.15.4 physical layer and a mesh topology. It ensures the message delivery time with strongly limited collision risk due to the spatial reuse of medium in the two-hop neighbourhood. This proposal was characterized by modelling and simulation using OPNET network simulator. Finally we implemented the proposed mechanisms on hardware devices and deployed a sensors network in real situation to verify the accuracy of the model and evaluate the proposal according to different test configurations.
基金supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)under Grant No.NIPA-2011-(C1090-1121-0002)
文摘In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.
文摘TCP performance degrades when end-to-end connections extend over wireless links which are characterized by high Bit Error Rate and intermittent connectivity. Such degradation is mainly accounted for TCP’s unnecessary congestion control actions while attempting TCP loss recovery. Several independent link loss recovery approaches are proposed by researchers to reduce number of losses visible at TCP. In this paper we first presented a survey of loss mitigation techniques at wireless link layer. Secondly performance evaluation for TCP through Type 0 Automatic Retransmission Request mechanism in erroneous Wireless LAN is presented. In particular, simulations are performed taking into account the wireless errors introduced over IEEE 802.11 link using a well-established 2-State Markov model. TCP performance is evaluated under different settings for maximum link retransmissions allowed for each frame. Simulation results show that, link retransmission improves TCP performance by reducing losses perceived at TCP sender. However, such improvement is often associated with adverse effect on other TCP parameters that may cost a lot in return under extreme network conditions. In this paper an attempt is made to observe impact of link retransmissions on the performance of multiple TCP flows competing with each other. The analysis presented in this paper signifies the scope for maximizing TCP’s throughput at the least possible cost.
基金supported by a research grant from the Natural Science and Engineering Research Council(NSERC)under grant No.CRDPJ 419147-11Care In Motion Inc.,Canada
文摘Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to coexist in an area and share the same channel in order to provide healthcare services to different patients. This causes severe interference between WBANs that could significantly reduce the network throughput and increase the amount of power consumed by sensors placed on the body. There-fore, an efficient channel-resource allocation scheme in the medium access control (MAC) layer is crucial. In this paper, we devel-op a centralized MAC layer resource allocation scheme for a WBAN. We focus on mitigating the interference between WBANs and reducing the power consumed by sensors. Channel and buffer state are reported by smartphones deployed in each WBAN, and channel access allocation is performed by a central controller to maximize network throughput. Sensors have strict limitations in terms of energy consumption and computing capability and cannot provide all the necessary information for channel allocation in a timely manner. This deteriorates network performance. We exploit the temporal correlation of the body area channel in order to minimize the number of channel state reports necessary. We view the network design as a partly observable optimization prob-lem and develop a myopic policy, which we then simulate in Matlab.