Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoi...In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.展开更多
Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity....Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.展开更多
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon...Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comp...The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.展开更多
Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring c...Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.展开更多
In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great im...In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.展开更多
With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compare...With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise c...From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.展开更多
[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual mon...[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual monitoring. [Method] The architecture of wireless sensor network, network nodes, hardware design as well as principle for the program structure of software operating system and corresponding parameters were analyzed to illustrate the characteristics of monitoring system for field soil water content based on wireless sensor network, and the advantages in application of this system. [Result] Sensor nodes could correctly collect and transmit soil water content, realize stable data transmission of soil water content, indicating that wireless sensor network is suitable for real-time monitoring of field soil water content. [Conclusion] This study indicates that wireless sensor network possesses a widely application foreground in the development of agriculture.展开更多
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap...The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling ...Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling through proper model construction. Due to its versatility, numerical modeling is the most popular method for ground control design and problem solving. However numerical modeling results require highly experienced professionals to interpret its validity/applicability to actual mining operations due to complicated mining and geological conditions. Underground ground control monitoring is routinely performed to predict roof behavior such as weighting and weighting interval without matching observation of face mining condition while the mining pressures are being monitored, resulting in unrealistic interpretation of the obtained data on mining pressure. The importance of ground control pressure monitoring and simultaneous observation of mining and geological conditions is illustrated by an example of shield leg pressure monitoring and interpretation in an U.S. longwall coal mine: it was found that the roof strata act like a plate, not an individual block of the size of a shield dimension, as commonly assumed by all researchers and shield capacity is not a fixed property for a longwall panel or a mine or a coal seam. A new mechanism on the interaction between shield's hydraulic leg pressure and roof strata for shield loading is proposed.展开更多
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no...Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.展开更多
A statistic-based benchmark was proposed for performance assessment and monitoring of model predic- tive control; the benchmark was straightforward and achievable by recording a set of output data only when the contro...A statistic-based benchmark was proposed for performance assessment and monitoring of model predic- tive control; the benchmark was straightforward and achievable by recording a set of output data only when the control performance was good according to the user’s selection. Principal component model was built and an auto- regressive moving average filter was identified to monitor the performance; an improved T2 statistic was selected as the performance monitor index. When performance changes were detected, diagnosis was done by model validation using recursive analysis and generalized likelihood ratio (GLR) method. This distinguished the fact that the per- formance change was due to plant model mismatch or due to disturbance term. Simulation was done about a heavy oil fractionator system and good results were obtained. The diagnosis result was helpful for the operator to improve the system performance.展开更多
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ...Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.展开更多
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform...Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.展开更多
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
文摘In this editorial,we comment on the article by Zhang et al.Chronic kidney disease(CKD)presents a significant challenge in managing glycemic control,especially in diabetic patients with diabetic kidney disease undergoing dialysis or kidney transplantation.Conventional markers like glycated haemoglobin(HbA1c)may not accurately reflect glycemic fluctuations in these populations due to factors such as anaemia and kidney dysfunction.This comprehensive review discusses the limitations of HbA1c and explores alternative methods,such as continuous glucose monitoring(CGM)in CKD patients.CGM emerges as a promising technology offering real-time or retrospective glucose concentration measure-ments and overcoming the limitations of HbA1c.Key studies demonstrate the utility of CGM in different CKD settings,including hemodialysis and peritoneal dialysis patients,as well as kidney transplant recipients.Despite challenges like sensor accuracy fluctuation,CGM proves valuable in monitoring glycemic trends and mitigating the risk of hypo-and hyperglycemia,to which CKD patients are prone.The review also addresses the limitations of CGM in CKD patients,emphasizing the need for further research to optimize its utilization in clinical practice.Altogether,this review advocates for integrating CGM into managing glycemia in CKD patients,highlighting its superiority over traditional markers and urging clinicians to consider CGM a valuable tool in their armamentarium.
基金supported by the Department of Electrical Engineering at the National Chin-Yi University of Technology。
文摘Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.
文摘Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
基金supported by the Youth Science and Technology Fund Program in Gansu Province(20JR5RA434 and 20JR10RA200)National Natural Science Foundation of China(52168051)+1 种基金Gansu Province University Innovation Fund Project(2020A031)Gansu Provincial Science and Technology Plan Fund Project(22CX8GA112)。
文摘The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.
文摘Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.
基金supported by the National Natural Science Foundation of China(51975058).
文摘In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.
基金Project (No. 2005C22060) supported by the Science and Technology Department of Zhejiang Province, China
文摘With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
文摘From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.
基金Supported by the National High-tech R&D Program of China(2006AA100223)~~
文摘[Objective] To water content monitoring study the application of wireless sensor network in field so and to discuss the methods for solving the problems of low sampling rate, high cost and poor real-time in actual monitoring. [Method] The architecture of wireless sensor network, network nodes, hardware design as well as principle for the program structure of software operating system and corresponding parameters were analyzed to illustrate the characteristics of monitoring system for field soil water content based on wireless sensor network, and the advantages in application of this system. [Result] Sensor nodes could correctly collect and transmit soil water content, realize stable data transmission of soil water content, indicating that wireless sensor network is suitable for real-time monitoring of field soil water content. [Conclusion] This study indicates that wireless sensor network possesses a widely application foreground in the development of agriculture.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.42177143,42277461)the Science Foundation for Distinguished Young Scholars of Sichuan Province(Grant No.2020JDJQ0011).Thanks to the Chn Energy Dadu River Hydropower Development Co.,Ltd,China Three Gorges Construction Engineering Corporation,Yalong River Hydropower Development Company,Ltd,Power China Chengdu Engineering Co.,Ltd,Power China Northwest Engineering Co.,Ltd,Power China Sinohydro Bureau 7 Co.,Ltd,China Gezhouba Group No.1 Engineering Co.,Ltd.,and the 5th Engineering Co.,Ltd.of China Railway Construction Bridge Engineering Bureau Group for the support and assistance.
文摘The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
基金supported by the National Natural Science Foundation of China (Nos. 51604267 and 51704095)
文摘Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling through proper model construction. Due to its versatility, numerical modeling is the most popular method for ground control design and problem solving. However numerical modeling results require highly experienced professionals to interpret its validity/applicability to actual mining operations due to complicated mining and geological conditions. Underground ground control monitoring is routinely performed to predict roof behavior such as weighting and weighting interval without matching observation of face mining condition while the mining pressures are being monitored, resulting in unrealistic interpretation of the obtained data on mining pressure. The importance of ground control pressure monitoring and simultaneous observation of mining and geological conditions is illustrated by an example of shield leg pressure monitoring and interpretation in an U.S. longwall coal mine: it was found that the roof strata act like a plate, not an individual block of the size of a shield dimension, as commonly assumed by all researchers and shield capacity is not a fixed property for a longwall panel or a mine or a coal seam. A new mechanism on the interaction between shield's hydraulic leg pressure and roof strata for shield loading is proposed.
基金supported by National Natural Science Foundation of China (Grant No. 70931004,Grant No. 70802043)
文摘Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.
基金Supported by the National Natural Science Foundation of China (Nos.60474051, 60534020), the Key Technology and Devel-opment Program of Shanghai Science and Technology Department (No.04DZ11008), and the Program for New Century Ex-cellent Talents in the University of China (NCET).
文摘A statistic-based benchmark was proposed for performance assessment and monitoring of model predic- tive control; the benchmark was straightforward and achievable by recording a set of output data only when the control performance was good according to the user’s selection. Principal component model was built and an auto- regressive moving average filter was identified to monitor the performance; an improved T2 statistic was selected as the performance monitor index. When performance changes were detected, diagnosis was done by model validation using recursive analysis and generalized likelihood ratio (GLR) method. This distinguished the fact that the per- formance change was due to plant model mismatch or due to disturbance term. Simulation was done about a heavy oil fractionator system and good results were obtained. The diagnosis result was helpful for the operator to improve the system performance.
基金Supported by the National High-Tech Development Program of China(No.863-511-920-011,2001AA411230).
文摘Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.
基金J.W.acknowledges financial supports from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22lgqb17).
文摘Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.