In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
Wireless sensor networks are provided with a limited source of power. The lifetime of such networks is an overwhelming matter in most network applications. This lifetime depends strongly on how efficiently such energy...Wireless sensor networks are provided with a limited source of power. The lifetime of such networks is an overwhelming matter in most network applications. This lifetime depends strongly on how efficiently such energy is distributed over the nodes especially during transmitting and receiving data. Each node may route messages to destination nodes either through short hops or long hops. Optimizing the length of these hops may save energy, and therefore extend the lifetime of WSNs. In this paper, we propose a theorem to optimize the hop’s length so to make WSN power consumption minimal. The theorem establishes a simple condition on hop’s length range. Computer simulation when performing such condition on Mica2 sensors and Mica2dot sensors reveals good performance regarding WSNs energy consumption.展开更多
The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs...The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).展开更多
Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfair...Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.展开更多
A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet...A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet size and all the links have the same transmission rate, has been extensively investigated. In this paper, network coding on more practical heterogeneous TWNs, featured by various packet sizes and transmission rates, is studied. Based on the Markov model, the throughput of the proposed network coding scheme, together with the throughput gain, is derived, which matches the simulation results very well. Numerical analyses indicate that, encoding the packets with close size and close transmission rate and enlarging buffer size at the relay node help in improving the throughput gain.展开更多
针对DV-HOP(distance vector hop)算法的定位精度对节点间跳数信息依赖性较强的特点,提出一种基于接收信号强度指示(received signal strength indicator,RSSI)每跳分级和平均跳距修正的DV-HOP改进算法RADV-HOP(RSSI and average hoppin...针对DV-HOP(distance vector hop)算法的定位精度对节点间跳数信息依赖性较强的特点,提出一种基于接收信号强度指示(received signal strength indicator,RSSI)每跳分级和平均跳距修正的DV-HOP改进算法RADV-HOP(RSSI and average hopping distance modifying DV-HOP)。仿真结果表明:在相同的网络环境里,与传统DV-HOP算法相比,RADV-HOP定位算法仅需节点通信芯片带有RSSI指示功能及增加少量的计算和通信开销,不需要额外的硬件开销,将每跳分为3个子级时,归一化定位误差能下降65%;与其他DV-HOP修正算法相比,RADV-HOP算法以相同的通信开销和稍微增加的计算开销使定位误差下降了45%。展开更多
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.
文摘针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对节点间的跳数进行细化,用细化后呈小数级的跳数代替传统的整数级跳数,并建立了数据能量消耗模型,优化了网络传输性能。ARDV-Hop算法还针对节点分布不均匀的区域提出跳距优化算法:在节点密度大的区域,采用余弦定理优化跳距;密度小的区域,采用最小均方误差(Least Mean Square,LMS)来修正跳距。仿真实验表明,在同等网络环境下,与传统DV-Hop算法、GDV-Hop算法和WOA-DV-Hop算法相比,ARDV-Hop算法能更有效地降低定位误差.
文摘Wireless sensor networks are provided with a limited source of power. The lifetime of such networks is an overwhelming matter in most network applications. This lifetime depends strongly on how efficiently such energy is distributed over the nodes especially during transmitting and receiving data. Each node may route messages to destination nodes either through short hops or long hops. Optimizing the length of these hops may save energy, and therefore extend the lifetime of WSNs. In this paper, we propose a theorem to optimize the hop’s length so to make WSN power consumption minimal. The theorem establishes a simple condition on hop’s length range. Computer simulation when performing such condition on Mica2 sensors and Mica2dot sensors reveals good performance regarding WSNs energy consumption.
文摘The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).
基金Projects(61163060,61103204,60963022) supported by the National Natural Science Foundation of ChinaProject(D018023) supported by the Natural Science Foundation of Guangxi Province,ChinaPostdoctoral Funding of Central South University,China
文摘Wireless mesh network (WMN) is a new multi-hop network for broadband accessing to intemet. However, there exists a server unfairness problem based on different hop distances in WMN. To solve this problem, the unfairness issue was analyzed in test-bed experiment and NS2 simulation. A dynamic queue management scheme E-QMMN was proposed, which allocates the queue buffer according to the hop distance of every flow. The experimental results show that the proposed scheme can not only increase the hop distance fairness of the legacy scheme at most 50%, but also reduce the average round trip time at least 29% in congested WMN environments.
基金Supported by the National Natural Science Foundation of China(No.61070190 and 61001126)Zhejiang Provincial Natural Science Foundation of China(No.Z1100455)Ph.D.Programs Foundation of Ministry of Education of China(No.20123317110002)
文摘A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet size and all the links have the same transmission rate, has been extensively investigated. In this paper, network coding on more practical heterogeneous TWNs, featured by various packet sizes and transmission rates, is studied. Based on the Markov model, the throughput of the proposed network coding scheme, together with the throughput gain, is derived, which matches the simulation results very well. Numerical analyses indicate that, encoding the packets with close size and close transmission rate and enlarging buffer size at the relay node help in improving the throughput gain.
文摘针对DV-HOP(distance vector hop)算法的定位精度对节点间跳数信息依赖性较强的特点,提出一种基于接收信号强度指示(received signal strength indicator,RSSI)每跳分级和平均跳距修正的DV-HOP改进算法RADV-HOP(RSSI and average hopping distance modifying DV-HOP)。仿真结果表明:在相同的网络环境里,与传统DV-HOP算法相比,RADV-HOP定位算法仅需节点通信芯片带有RSSI指示功能及增加少量的计算和通信开销,不需要额外的硬件开销,将每跳分为3个子级时,归一化定位误差能下降65%;与其他DV-HOP修正算法相比,RADV-HOP算法以相同的通信开销和稍微增加的计算开销使定位误差下降了45%。