期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Energy optimal routing for long chain-type wireless sensor networks in underground mines 被引量:12
1
作者 Jiang Haifeng Qian Jiansheng +1 位作者 Sun Yanjing Zhang Guoyong 《Mining Science and Technology》 EI CAS 2011年第1期17-21,共5页
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions... Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms. 展开更多
关键词 wireless sensor network Energy optimal routing Underground mine Lifespan of network
下载PDF
Harris Hawks Algorithm Incorporating Tuna Swarm Algorithm and Differential Variance Strategy
2
作者 XU Xiaohan YANG Haima +4 位作者 ZHENG Heqing LI Jun LIU Jin ZHANG Dawei HUANG Hongxin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第6期461-473,共13页
Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)i... Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified. 展开更多
关键词 Harris Hawks optimization nonlinear periodic energy decreases differential mutation strategy wireless sensor networks(WSN)coverage optimization results
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部