期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Analysis and Design of Four-Plate Capacitive Wireless Power Transfer System for Undersea Applications 被引量:12
1
作者 Lei Yang Yuanqi Zhang +5 位作者 Xiaojie Li Jiale Jian Zhe Wang Jingjing Huang Li Ma Xiangqian Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第3期202-211,共10页
This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on elec... This paper presents a four-plate undersea capacitive wireless power transfer(CPT)system for underwater applications such as autonomous underwater vehicles(AUVs).Generally,a CPT system transfers the power based on electric fields.The complex resonant compensation networks are used to make the CPT system work in the resonant condition.The resonant voltage is always very high.It will be a big challenge to the human safety.In this paper,a virtual electrons periodic reciprocating flow theory is proposed for the CPT system.In one switching cycle,the electrons firstly flow in the forward direction through the forward path and then flow in the inverse direction through the inverse path.The CPT system has been deeply studied with the vacuum dielectric or the air dielectric.However,for the CPT system,there are few papers to show the underwater application.In this paper,an undersea four-plate CPT system is designed and studied in the underwater condition.The two coupling capacitors and other elements of the CPT system could build a closed-loop path.A small value inductor is adapted as a resonant compensation network for the four-plate CPT system.The DC voltage is inverted to the AC voltage in the primary side with the single-phase full-bridge inverter.The resonant voltage is rectified to the DC voltage in the secondary side with the single-phase full-bridge diode rectifier.A 100 W power level CPT system is constructed to verify the theory analysis and the calculation.The theory analysis is verified by the simulated and experimental results.The stable output voltage and load power are achieved in this paper. 展开更多
关键词 wireless power transfer system capacitive underwater applications autonomous underwater vehicles(AUVs)
下载PDF
Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless Power Transfer System 被引量:1
2
作者 卢伟国 李惠荣 +1 位作者 陈伟铭 刘黎辉 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期148-151,共4页
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe... Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case. 展开更多
关键词 MR WPT Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant wireless power transfer system
下载PDF
Wireless communication and wireless power transfer system for implantable medical device 被引量:3
3
作者 Zhang Zhang Chao Chen +3 位作者 Tairan Fei Hao Xiao Guangjun Xie Xin Cheng 《Journal of Semiconductors》 EI CAS CSCD 2020年第10期56-62,共7页
Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.... Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research,to prevent fluctuations in the receiving voltage,and lead to reduce transmission efficiency.This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils.Test results show that the system can provide stable receiving voltage,no matter how the distance between the transmitting coil and the receiving coil is changed.When the transmission distance is 20 mm,the power transfer efficiency of the system can reach 18.5%under the open-loop state,and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal. 展开更多
关键词 implantable medical equipment four-coil insertion resonance structure wireless communication wireless power transfer
下载PDF
Middle range wireless power transfer systems with multiple resonators 被引量:1
4
作者 陈新 张桂香 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2127-2136,共10页
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re... The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W. 展开更多
关键词 wireless power transfer middle range multiple resonators S-PARAMETERS two-port network impedance matching
下载PDF
Receiver Power Allocation and Transmitter Power Control Analysis for Multiple-Receiver Wireless Power Transfer Systems
5
作者 Zhi-Hao Guo Shi-Er Dong 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第4期291-299,共9页
As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the k... As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%. 展开更多
关键词 Multiple-receiver receiver power allocation transmitter power control wireless power transfer(WPT).
下载PDF
Coupler Loss Analysis of Magnetically Coupled Resonant Wireless Power Transfer System
6
作者 Da Li XuSheng Wu +2 位作者 Wei Gao Di Luo Jianxin Gao 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期63-72,共10页
The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critica... The demand for electric vehicles has increased over the past few years.Wireless power transfer for electric vehicles provides more flexibility than traditional plug-in charging technology.Charging couplers are critical components in wireless power transfer systems.The thermal effect produced by the magnetic coupler in work will cause the temperature of the device to rise rapidly,affecting the work efficiency,transfer power,operation reliability,and service life.This paper modeled and analyzed each component's temperature distribution characteristics and thermal behavior.Firstly,the magnetic coupler's mutual inductance and magnetic circuit model are established,and the thermal model of the magnetic coupler analyzes the heat generation process.The thermal models of the coupler under three different magnetic core distributions are established,and the temperature rise of each component is obtained.The temperature rise of different parts of the coupler is verified by the temperature rise test structure of the experiment. 展开更多
关键词 wireless power transfer Magnetic coupler Thermal circuit model Temperature distribution
下载PDF
Cosmic Wireless Power Transfer System and the Equation for Everything E=mc^(2)=vc^(2)/60=a^(3)/T=G(M_(1)+M_(2))/4π^(2)=(KE+PE)/1.0E15=Q=PA|F=λ/hc=1/2q=VI=1/2LI^(2)=1/2CV=I^(2)R=…
7
作者 Greg Poole 《Journal of High Energy Physics, Gravitation and Cosmology》 2018年第4期588-650,共63页
By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represente... By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represented as a long wave radio system operating at Tremendously Low Frequency(TLF).Results again confirm that the“near-field”is Tesla’s“dynamic gravity”,better known to engineers as dynamic braking or to physicists as centripetal acceleration,or simply(g).Timewave theory is invented,and the relationship of reflected timewaves and time travel explored.A new law of the Sun is proposed as well as the merging of Einstein’s equation with acoustics and cosmic superstring theory.A new law of cosmic efficiency is also proposed that equates vibratory force and pressure with volume acceleration of the solar system.Lorentz force is broken down into centripetal and gravitational waves.Ten-dimensional cosmic superstring theory is espoused versus the aging three-dimensional Maxwellian model.Spherical antenna patterns for planets are presented and flux transfer frequency is calculated using distance to planets as wavelengths.The galactic grid operates at a Schumann Resonance of 7.83 Hz,which is derived from the science of dark energy and dark matter.The Sun and the planets are tuned to transmit and receive electrical power like resonating Tesla coils.The Earth’s stator winding has been modeled as a toroid tesla coil and the armature as a spherical armature.The equation for everything is born. 展开更多
关键词 Cosmic Efficiency Equation for Everything Flux transfer Events Inductive Coupling Spherical Antenna Time Wave Velocity-Energy Equivalence wireless power transfer
下载PDF
Analysis of Electromagnetic Exposure in Wireless Power Transfer System for Endoscopic Micro-robot
8
作者 YE Dong-dong YAN Guo-zheng LI Jia-jun WANG Kun-dong MA Guan-ying 《Chinese Journal of Biomedical Engineering(English Edition)》 2008年第2期47-53,60,共8页
A wireless power transfer system for endoscopic micro-robot operating at 36 kHz is presented in this paper. The issue of patient' s health and safety regarding exposure to the electromagnetic field is addressed. The ... A wireless power transfer system for endoscopic micro-robot operating at 36 kHz is presented in this paper. The issue of patient' s health and safety regarding exposure to the electromagnetic field is addressed. The specific absorption rate and current density can be used to investigate the electromagnetic influences on the biological tissues surrounded by the wireless power launching coil. In view of this purpose, the limited close-ound solenoid electromagnetic model is built, the relationship between the electric intensity and the specific absorption rate and current density is deduced, and the simulation experiments are done. Experimental results show that the values of SAR and current density related to different tissue catalogs are all very small and do not exceed their own limits respectively when the resonance frequency of operation is 36 kHz. 展开更多
关键词 wireless power transfer endoscopic micro-robot specific absorptionrate current density SOLENOID
下载PDF
Wireless Information and Power Transfer in Underwater Acoustic Sensor Networks
9
作者 Feng Yizhi Ji Fei 《China Communications》 SCIE CSCD 2024年第10期256-266,共11页
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te... Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs. 展开更多
关键词 underwater acoustic modem underwater acoustic sensor network(UWASN) wireless information and power transfer(WIPT)
下载PDF
Achieving maximum power transfer of inductively coupled wireless power transfer system based on dynamic tuning control 被引量:23
10
作者 QIANG Hao HUANG XueLiang +2 位作者 TAN LinLin JI QingJing ZHAO JiaMing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1886-1893,共8页
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l... As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies. 展开更多
关键词 dynamic tuning inductively coupled TOPOLOGY wireless power transfer
原文传递
Circuit model based design and analysis for a four-structure-switchable wireless power transfer system 被引量:3
11
作者 FANG XueLin LIU Hao +2 位作者 LI GuiYang SHAO Qi LI HongYi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第3期534-544,共11页
The four-coil wireless power transfer(WPT)technology can effectively improve the transfer efficiency.The high efficiency,however,cannot be obtained along the whole transfer distance due to the phenomenon of frequency ... The four-coil wireless power transfer(WPT)technology can effectively improve the transfer efficiency.The high efficiency,however,cannot be obtained along the whole transfer distance due to the phenomenon of frequency splitting in the over coupled region.Aiming at this limitation,this paper presents a switchable WPT system to improve the overall efficiency by changing the number of working coils.The switching conditions for the designed system are determined based on the analysis of the transfer efficiencies of four structures,which is deduced through modeling the equivalent circuits.The simulation results well comply with the experimental results and both of them indicate that the switchable system can greatly improve the overall transfer efficiency along the whole transfer distance.The overall efficiency of the experimental system can reach above 70%at9.97 MHz without additional complexity,which is higher than any single structure system. 展开更多
关键词 magnetic resonance coupling efficiency analysis structures switched wireless power transfer
原文传递
Impact of Non-ideal Waveforms on GaN Power FET in Magnetic Resonant Wireless Power Transfer System 被引量:1
12
作者 Shizhen Huang Jianshan Zhang +1 位作者 Wengang Wu Ling Xia 《Chinese Journal of Electrical Engineering》 CSCD 2019年第3期30-41,共12页
GaN field-effect transistors(FET)have low conduction and switching losses in high-frequency(>MHz)resonant wireless power transfer systems.Nevertheless,such systems impose a unique stress on GaN FETs owing to their ... GaN field-effect transistors(FET)have low conduction and switching losses in high-frequency(>MHz)resonant wireless power transfer systems.Nevertheless,such systems impose a unique stress on GaN FETs owing to their non-ideal voltage waveforms.In this work,we report the observed non-ideal behavior in a 6.78 MHz magnetic resonant wireless transfer system that employs class-D GaN power amplifiers.The non-ideal waveform phenomenon existing at the output of the power amplifier is explained.The study analyzes the causes of this phenomenon,including the coupling coefficient k of the coil,the DC input voltage of the amplifier,and the load on the receiver.Each parameter is simulated and analyzed using LTspice.The influence of the phenomenon on the on-state resistance of the GaN device is proved in an experimental measurement,and the cause of the phenomenon is explained.The study combines a theoretical simulation and an experimental test to discuss the effect of this phenomenon on GaN power devices and proposes the corresponding solutions,which include the limitation of voltage,current,and power of the system,thermal management,and other protection measures. 展开更多
关键词 GAN wireless power transfer non-ideal waveform simulation verification
原文传递
Mechanism of Wireless Power Transfer System Waveform Distortion Caused by Nonideal Gallium Nitride Transistor Characteristics 被引量:1
13
作者 Shaoyu Sun Jianshan Zhang +2 位作者 Wengang Wu Ling Xia Yufeng Jin 《Chinese Journal of Electrical Engineering》 CSCD 2021年第2期61-69,共9页
Gallium nitride(GaN)field-effect transistors have low ON resistance and switching losses in high-frequency(>MHz)resonant wireless power transfer systems.Nevertheless,their performance in the system is determined by... Gallium nitride(GaN)field-effect transistors have low ON resistance and switching losses in high-frequency(>MHz)resonant wireless power transfer systems.Nevertheless,their performance in the system is determined by their characteristics and operation mode.A particular operating mode in a 6.78-MHz magnetic resonant wireless transfer system that employs class-D GaN power amplifiers in the zero-voltage switching mode is studied.Two operation modes,the forward mode and the reverse mode,are investigated.The nonideal effect under the device-level dynamic resistance and thermal effect are also analyzed.The dynamic resistance under different operation modes is demonstrated to have different generation mechanisms.Finally,the device characteristics with system operating conditions are combined,and the effects of temperature and dynamic resistance under different operating conditions are evaluated. 展开更多
关键词 GAN wireless power transfer dynamic resistance thermal effect
原文传递
Optimal Design of Transmission Characteristics for Hexagonal Coil Wireless Power Transfer System Based on Genetic Algorithm
14
作者 Ping’an Tan Bin Song +1 位作者 Xu Shangguan Huadong Liu 《Chinese Journal of Electrical Engineering》 CSCD 2023年第2期94-106,共13页
Effective optimization methods are used to guide the optimal design of coil parameters,which is significant for improving the transmission performance of the wireless power transfer(WPT)system.Traditional methods most... Effective optimization methods are used to guide the optimal design of coil parameters,which is significant for improving the transmission performance of the wireless power transfer(WPT)system.Traditional methods mostly rely on the exhaustive attack method and finite element analysis(FEA)to achieve the coil parameter design,which have the disadvantages of complex modeling and time-consumption.To overcome these limitations,this study proposes an optimization strategy based on the genetic algorithm(GA),which considers the actual requirements of the efficiency and power of the WPT system.First,a direct integration method is proposed to simplify the analytical solution process of the mutual inductance between the hexagonal coils.Based on the mutual inductance model,the transmission characteristics of the hexagonal coil WPT system are deeply analyzed by the control variable method.Most importantly,with the proposed optimization objective function and its constraints,the GA is used to automatically achieve multi-parameter optimization of the hexagonal coil.Finally,a 500 W WPT system experimental platform is established,and the experimental results verify the feasibility of the proposed optimization method. 展开更多
关键词 wireless power transfer(WPT) hexagonal coil MISALIGNMENT optimal design genetic algorithm(GA)
原文传递
Reconfigurable Transmitter Coil Structure for Highly Efficient and Misalignment-insensitive Wireless Power Transfer Systems in Megahertz Range
15
作者 Lihao Wu Bo Zhang 《Chinese Journal of Electrical Engineering》 CSCD 2019年第2期56-62,共7页
The structural optimization of coils is a key issue in wireless power transfer(WPT)applications owing to size limitations.In this study,a novel planar-spiral transmitter coil(TX-coil)with an outer-tight and inner-spar... The structural optimization of coils is a key issue in wireless power transfer(WPT)applications owing to size limitations.In this study,a novel planar-spiral transmitter coil(TX-coil)with an outer-tight and inner-sparse configuration is proposed to achieve a high quality factor(Q-factor)and uniform magnetic field,which ensures high efficiency and improves the misalignment tolerance for several-megahertz WPT systems.Furthermore,a closed-form expression for the Q-factor is provided and analyzed for coil optimization.By using this method,a TX-coil with an outer diameter of 100 mm and a wire diameter of 1.5 mm is designed and tested at 1 MHz.Finite element method simulations and experimental results demonstrate that the Q-factor is increased by about 8%in comparison with evenly spaced planar spiral coils,which is achieved while ensuring a relatively uniform magnetic field. 展开更多
关键词 High quality factor planar spiral coil structure optimization uniform magnetic field wireless power transfer
原文传递
Optimal transmit beamforming for near-field integrated sensing and wireless power transfer systems
16
作者 Ping Sun Haibo Dai Baoyun Wang 《Intelligent and Converged Networks》 EI 2022年第4期378-386,共9页
The integrated sensing and wireless power transfer(ISWPT)technology,in which the radar sensing and wireless power transfer functionalities are implemented using the same hardware platform,has been recently proposed.In... The integrated sensing and wireless power transfer(ISWPT)technology,in which the radar sensing and wireless power transfer functionalities are implemented using the same hardware platform,has been recently proposed.In this paper,we consider a near-field ISWPT system where one hybrid transmitter deploys extremely large-scale antenna arrays,and multiple energy receivers are located in the near-field region of the transmitter.Under such a new scenario,we study radar sensing and wireless power transfer performance trade-offs by optimizing the transmit beamforming vectors.In particular,we consider the transmit beampattern matching and max-min beampattern gain design metrics.For each radar performance metric,we aim to achieve the best performance of radar sensing,while guaranteeing the requirement of wireless power transfer.The corresponding beamforming design problems are non-convex,and the semi-definite relaxation(SDR)approach is applied to solve them globally optimally.Finally,numerical results verify the effectiveness of our proposed solutions. 展开更多
关键词 radar sensing near-field wireless power transfer integrated sensing and wireless power transfer(ISWPT) beamforming design
原文传递
Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System
17
作者 CHANG Mingyang HAN Jiaqi +4 位作者 MA Xiangjin XUE Hao WU Xiaonan LI Long CUI Tiejun 《ZTE Communications》 2022年第2期48-62,共15页
Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous... Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined. 展开更多
关键词 programmable metasurface simultaneously wireless information and power transfers wireless energy harvesting wireless power transfer
下载PDF
Efficient and stable wireless power transfer based on the non-Hermitian physics 被引量:5
18
作者 Chao Zeng Zhiwei Guo +8 位作者 Kejia Zhu Caifu Fan Guo Li Jun Jiang Yunhui Li Haitao Jiang Yaping Yang Yong Sun Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期37-44,共8页
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promot... As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs. 展开更多
关键词 wireless power transfer non-Hermitian physics topological edge states
下载PDF
RIS-Aided Constant-Envelope Beamforming for Multiuser Wireless Power Transfer:A Max-Min Approach 被引量:3
19
作者 Huiyuan Yang Chang Cai +1 位作者 Xiaojun Yuan Yingchang Liang 《China Communications》 SCIE CSCD 2021年第3期80-90,共11页
As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we... As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs. 展开更多
关键词 reconfigurable intelligent surface wireless power transfer max-min fairness constantenvelope beamforming
下载PDF
Design of Wireless Power Transfer with High Efficiency for Biomedical Implants 被引量:1
20
作者 Qingya Li Zhiwei Zhang Jingna Mao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期53-60,共8页
Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,a... Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,an implantable magnetic coupling resonant WPT system in-tegrated with a metasurface element working at 430 MHz is presented.Similar planar copper coil components for the transmitting and receiving structures are used to construct the primary system,and then the metasurface element is integrated to constitute the whole WPT system.The effects of the distances between the transmitting coil and skin surface,between the skin surface,and receiv-ing coil are discussed.The results show that the efficiency will be enhanced by 38-50 dB integrat-ing with the metasurface. 展开更多
关键词 wireless power transfer(WPT) MINIATURIZATION metasurface
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部