Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a prom...Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.展开更多
Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-c...Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.展开更多
IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physic...IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC), utilizig the vacant spectrum bands already allocated to broadcast TV without interference.. The WRAN employs CR technologies to sense and estimate the television signals and use the technologies of dynamic spectrum management to find and then allocate vacant spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue, WRANs and IEEE 802.22, CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.展开更多
IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physi...IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC),to use the already allocated fallow spectrums to broadcast TV in a non-interference way. The WRAN employs CR technologies to sense and estimate the television frequencies and use the technologies of dynamic spectrum management to find and then allocate idle spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue,WRANs and IEEE 802.22,CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.展开更多
To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses ...To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%.展开更多
Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The ...Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The existing approaches (often RSSI measurement-based), however, suffer from heavy measurement cost and are not well suitable for the large-scale densely deployed WSNs. NRC-Map, a novel algorithm is put forward for sensor nodes radio coverage mapping. The algorithm is based on the RSSI values collected by the neighbor nodes. According to the spatial relationship, neighbor nodes are mapping to several overlapped sectors. By use of the least squares fitting method, a log-distance path loss model is established for each sector. Then, the max radius of each sector is computed according to the path loss model and the given signal attenuation threshold. Finally, all the sectors are overlapped to estimate the node radio coverage. Experimental results show that the method is simple and effectively improve the prediction accuracy of the sensor node radio coverage.展开更多
Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisi...Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effec...A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.展开更多
An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cog...An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.展开更多
针对煤矿井下工作场景恶劣复杂、人员健康及环境参数监控难度大、易造成安全事故等问题,采用物联网技术,设计了一种基于无线传感器网络(Wireless Sensor Networks,WSN)和射频识别(Radio Frequency Identification,RFID)的矿井作业人员...针对煤矿井下工作场景恶劣复杂、人员健康及环境参数监控难度大、易造成安全事故等问题,采用物联网技术,设计了一种基于无线传感器网络(Wireless Sensor Networks,WSN)和射频识别(Radio Frequency Identification,RFID)的矿井作业人员健康监测系统。该系统利用WSN实时监控人体的心率、血氧及井下环境温湿度、气体浓度等数据;利用RFID技术定位井下作业人员;将所采集信息数据传输至服务器实时检测,实现安全预警并及时定位救援,从而远程监测作业人员健康。展开更多
文章分析了低压配网特性及其对通信网络的需求,通过网关和终端设备的合理布局,提出了配网全覆盖、高可靠性通信的基于远距离无线电(Long Range Radio,LoRa)技术的无线通信网络覆盖方案。在此基础上,针对网络覆盖范围、通信稳定性、数据...文章分析了低压配网特性及其对通信网络的需求,通过网关和终端设备的合理布局,提出了配网全覆盖、高可靠性通信的基于远距离无线电(Long Range Radio,LoRa)技术的无线通信网络覆盖方案。在此基础上,针对网络覆盖范围、通信稳定性、数据传输速率以及延迟等关键指标,采用仿真方法对所设计方案进行了性能评估。评估结果显示,提出方案的适应性较好,性能优越,为智能电网实现可靠通信提供了有效的解决方案,满足了低压配网通信的需求。展开更多
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:14-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by the Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘Cognitive radio wireless sensor networks(CRWSN)can be defined as a promising technology for developing bandwidth-limited applications.CRWSN is widely utilized by future Internet of Things(IoT)applications.Since a promising technology,Cognitive Radio(CR)can be modelled to alleviate the spectrum scarcity issue.Generally,CRWSN has cognitive radioenabled sensor nodes(SNs),which are energy limited.Hierarchical clusterrelated techniques for overall network management can be suitable for the scalability and stability of the network.This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering(MDMO-EAC)Scheme for CRWSN.The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.Besides,theMDMOEAC algorithm is based on the dwarf mongoose optimization(DMO)algorithm design with oppositional-based learning(OBL)concept for the clustering process,showing the novelty of the work.In addition,the presented MDMO-EAC algorithm computed a multi-objective function for improved network efficiency.The presented model is validated using a comprehensive range of experiments,and the outcomes were scrutinized in varying measures.The comparison study stated the improvements of the MDMO-EAC method over other recent approaches.
文摘Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.
基金Key Project of Chinese Ministry of Education(No.206055)
文摘IEEE has set up in October 2004 the IEEE802.22 Working Group-Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC), utilizig the vacant spectrum bands already allocated to broadcast TV without interference.. The WRAN employs CR technologies to sense and estimate the television signals and use the technologies of dynamic spectrum management to find and then allocate vacant spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue, WRANs and IEEE 802.22, CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.
文摘IEEE has set up in October 2004 the IEEE802.22 Working Group—Wireless Regional Area Network (WRAN) Task Force to work out air interface standard based on Cognitive Radio (CR) technologies. The standard includes Physical Layer (PHY) and Media Access Control (MAC),to use the already allocated fallow spectrums to broadcast TV in a non-interference way. The WRAN employs CR technologies to sense and estimate the television frequencies and use the technologies of dynamic spectrum management to find and then allocate idle spectrums. The CR technologies are representing one of the major trends for future wireless communications. This article on WRANs and CR technologies will be divided into two issues. In this issue,WRANs and IEEE 802.22,CR technologies are introduced. And the second part in the next issue will analyze the applications of CR technologies.
文摘To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%.
文摘Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The existing approaches (often RSSI measurement-based), however, suffer from heavy measurement cost and are not well suitable for the large-scale densely deployed WSNs. NRC-Map, a novel algorithm is put forward for sensor nodes radio coverage mapping. The algorithm is based on the RSSI values collected by the neighbor nodes. According to the spatial relationship, neighbor nodes are mapping to several overlapped sectors. By use of the least squares fitting method, a log-distance path loss model is established for each sector. Then, the max radius of each sector is computed according to the path loss model and the given signal attenuation threshold. Finally, all the sectors are overlapped to estimate the node radio coverage. Experimental results show that the method is simple and effectively improve the prediction accuracy of the sensor node radio coverage.
文摘Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.
文摘A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.
文摘An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.
文摘针对煤矿井下工作场景恶劣复杂、人员健康及环境参数监控难度大、易造成安全事故等问题,采用物联网技术,设计了一种基于无线传感器网络(Wireless Sensor Networks,WSN)和射频识别(Radio Frequency Identification,RFID)的矿井作业人员健康监测系统。该系统利用WSN实时监控人体的心率、血氧及井下环境温湿度、气体浓度等数据;利用RFID技术定位井下作业人员;将所采集信息数据传输至服务器实时检测,实现安全预警并及时定位救援,从而远程监测作业人员健康。
文摘文章分析了低压配网特性及其对通信网络的需求,通过网关和终端设备的合理布局,提出了配网全覆盖、高可靠性通信的基于远距离无线电(Long Range Radio,LoRa)技术的无线通信网络覆盖方案。在此基础上,针对网络覆盖范围、通信稳定性、数据传输速率以及延迟等关键指标,采用仿真方法对所设计方案进行了性能评估。评估结果显示,提出方案的适应性较好,性能优越,为智能电网实现可靠通信提供了有效的解决方案,满足了低压配网通信的需求。