In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of u...In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of users transmitting status updates,which are collected by the user randomly over time,to an edge server through unreliable orthogonal channels.It begs a natural question:with random status update arrivals and obscure channel conditions,can we devise an intelligent scheduling policy that matches the users and channels to stabilize the queues of all users while minimizing the average AoI?To give an adequate answer,we define a bipartite graph and formulate a dynamic edge activation problem with stability constraints.Then,we propose an online matching while learning algorithm(MatL)and discuss its implementation for wireless scheduling.Finally,simulation results demonstrate that the MatL is reliable to learn the channel states and manage the users’buffers for fresher information at the edge.展开更多
To provide a certain level of Quality of Service (QoS) guarantees for multiuser wireless downlink video streaming transmissions, we propose a multiuser scheduling scheme for QoS guarantees. It is based on the classic ...To provide a certain level of Quality of Service (QoS) guarantees for multiuser wireless downlink video streaming transmissions, we propose a multiuser scheduling scheme for QoS guarantees. It is based on the classic Queue-Length-Based (QLB)-rate maximum scheduling algorithm and integrated with the delay constraint and the packet priority drop. We use the large deviation principle and the effective capacity theory to construct a new analysis model to find each user's queue length threshold (delay constraint) violation probability. This probability corresponds to the upper bound of the packet drop probability, which indicates a certain level of statistical QoS guarantees. Then, we utilize the priority information of video packets and introduce the packet priority drop to further improve the quality perceived by each user. The simulation results show that the average Peak Signal to Noise Ratio (PSNR) value of the priority drop is 0.8 higher than that of the non-priority drop and the PSNR value of the most badly damaged video frame in the priority drop is on an average 4 higher than that of the non-priority drop.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
The Maximum C/I scheduling algorithm can provide the maximumsystem capacity for adaptive modu- lation and coding systems.however, it incurs poor fairness and high packet-dropping rate forreal-time service. We propose ...The Maximum C/I scheduling algorithm can provide the maximumsystem capacity for adaptive modu- lation and coding systems.however, it incurs poor fairness and high packet-dropping rate forreal-time service. We propose here a new scheduling algorithm,Earliest-Due-Date Maximum C/I Scheduling Algorithm(EDDMCI), bycombining deadline control with Maximum C/I to solve this problemeffectively. Analysis and simulation show that EDDMCI can providebounded delay/jitter guarantee and better fairness, as well as finesystem throughput.展开更多
基金supported in part by Shanghai Pujiang Program under Grant No.21PJ1402600in part by Natural Science Foundation of Chongqing,China under Grant No.CSTB2022NSCQ-MSX0375+4 种基金in part by Song Shan Laboratory Foundation,under Grant No.YYJC022022007in part by Zhejiang Provincial Natural Science Foundation of China under Grant LGJ22F010001in part by National Key Research and Development Program of China under Grant 2020YFA0711301in part by National Natural Science Foundation of China under Grant 61922049。
文摘In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of users transmitting status updates,which are collected by the user randomly over time,to an edge server through unreliable orthogonal channels.It begs a natural question:with random status update arrivals and obscure channel conditions,can we devise an intelligent scheduling policy that matches the users and channels to stabilize the queues of all users while minimizing the average AoI?To give an adequate answer,we define a bipartite graph and formulate a dynamic edge activation problem with stability constraints.Then,we propose an online matching while learning algorithm(MatL)and discuss its implementation for wireless scheduling.Finally,simulation results demonstrate that the MatL is reliable to learn the channel states and manage the users’buffers for fresher information at the edge.
基金supported by a Gift Funding from Huawei Technologies and Science Foundation of Education Bureau of Sichuan Province, China, under Grant No.10ZB019
文摘To provide a certain level of Quality of Service (QoS) guarantees for multiuser wireless downlink video streaming transmissions, we propose a multiuser scheduling scheme for QoS guarantees. It is based on the classic Queue-Length-Based (QLB)-rate maximum scheduling algorithm and integrated with the delay constraint and the packet priority drop. We use the large deviation principle and the effective capacity theory to construct a new analysis model to find each user's queue length threshold (delay constraint) violation probability. This probability corresponds to the upper bound of the packet drop probability, which indicates a certain level of statistical QoS guarantees. Then, we utilize the priority information of video packets and introduce the packet priority drop to further improve the quality perceived by each user. The simulation results show that the average Peak Signal to Noise Ratio (PSNR) value of the priority drop is 0.8 higher than that of the non-priority drop and the PSNR value of the most badly damaged video frame in the priority drop is on an average 4 higher than that of the non-priority drop.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
文摘The Maximum C/I scheduling algorithm can provide the maximumsystem capacity for adaptive modu- lation and coding systems.however, it incurs poor fairness and high packet-dropping rate forreal-time service. We propose here a new scheduling algorithm,Earliest-Due-Date Maximum C/I Scheduling Algorithm(EDDMCI), bycombining deadline control with Maximum C/I to solve this problemeffectively. Analysis and simulation show that EDDMCI can providebounded delay/jitter guarantee and better fairness, as well as finesystem throughput.