A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as...A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.展开更多
文摘A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.