An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network...Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network partitioning, incorrect and incomplete decision execution for WSANs. This paper proposes an efficient localized scheme, called LANTR, to repair the damaged topology of inter-actuator network while single actuator node paralyzes. For the failure of an ordinary actuator node, LANTR can rapidly repair the topology through relocating only one-hop neighbors of the failure node, meanwhile, keep the original topology structure as much as possible. Given the magnitude of cut vertex actuators playing on the connectivity, LANTR designs a novel method for each cut vertex to select out a specific guardian node with the minimum degree or minimum cumulative degree from its neighbors, which can reduce the repair influence on the original topology and effectively reduce the coverage loss rate. The performance of the proposed scheme is evaluated and compared with several existing representative topology repair schemes, and the results indicate that LANTR can more effectively and efficiently repair the topology of inter-actuator networks.展开更多
Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter...Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.展开更多
Actors'relocation is utilized during the network initialization to enhance real-time performance of wireless sensor and actor networks(WSANs)which is an important issue of WSANs.The actor deployment problem in WSA...Actors'relocation is utilized during the network initialization to enhance real-time performance of wireless sensor and actor networks(WSANs)which is an important issue of WSANs.The actor deployment problem in WSANs is proved NP-Hard whether the amount of actors is redundant or not,but to the best of our knowledge,no effective distributed algorithms in previous research can solve the problem.Thus two actor deployment strategies which need not the boundary control compared with present deployment strategies are proposed to solve this problem approximately based on the Voronoi diagram.Through simulation experiment,the results show that our distributed strategies are more effective than the present deployment strategies in terms of real-time performance,convergence time and energy consumption.展开更多
针对SAS模式下现有WSNs(Wireless Sensor Networks)路由协议不能很好地满足WSANs(Wireless Sensor and Actor Net-works)应用的需求的问题,利用J-Sim对WSANs的仿真功能,设计并实现了适应SAS模式的WSANs路由协议BHOER,同时给出了仿真数...针对SAS模式下现有WSNs(Wireless Sensor Networks)路由协议不能很好地满足WSANs(Wireless Sensor and Actor Net-works)应用的需求的问题,利用J-Sim对WSANs的仿真功能,设计并实现了适应SAS模式的WSANs路由协议BHOER,同时给出了仿真数据及性能分析,实验结果表明BHOER很好地满足了WSANs的路由需求。展开更多
One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic ...One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.展开更多
Wireless sensor and actuator networks (WSANs) have a wide range of applications. To perform effective sensing and acting tasks, multiple coordination mechanisms among the nodes are required. As attempt in this direc...Wireless sensor and actuator networks (WSANs) have a wide range of applications. To perform effective sensing and acting tasks, multiple coordination mechanisms among the nodes are required. As attempt in this direction, this paper describes collaborative estimation and control algorithms design for WSANs. First, a sensor-actuator coordination model is proposed based on distributed Kalman filter in federated configuration. This method provides the capability of fault tolerance and multi-source information fusion. On this basis, an actuator-actuator coordination model based on even-driven task allocation is introduced. Actuators utilize fused sensory information to adjust their action that incur the minimum energy cost to the system subject to the constraints that user's preferences regarding the states of the system are approximately satisfied. Finally, according to system requirements, a distributed algorithm is proposed to solve the task allocation problem. Simulations demonstrate the effectiveness of our proposed methods.展开更多
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
基金supported by the National Natural Science Foundation of China (Grant no. 61662042, 61262081, 61462053, and 61462056)partly supported by the Fundamental Research Funds for the Central Universities (Grant no. ZYGX2012J083)the Applied Fundamental Research Project of Yunnan Province (Grant no. 2014FA028)
文摘Node failure is one of the most severe problems that wireless sensor and actuator networks(WSANs) have to deal with. The failure of actuator nodes, in particular, may result in substantial consequences such as network partitioning, incorrect and incomplete decision execution for WSANs. This paper proposes an efficient localized scheme, called LANTR, to repair the damaged topology of inter-actuator network while single actuator node paralyzes. For the failure of an ordinary actuator node, LANTR can rapidly repair the topology through relocating only one-hop neighbors of the failure node, meanwhile, keep the original topology structure as much as possible. Given the magnitude of cut vertex actuators playing on the connectivity, LANTR designs a novel method for each cut vertex to select out a specific guardian node with the minimum degree or minimum cumulative degree from its neighbors, which can reduce the repair influence on the original topology and effectively reduce the coverage loss rate. The performance of the proposed scheme is evaluated and compared with several existing representative topology repair schemes, and the results indicate that LANTR can more effectively and efficiently repair the topology of inter-actuator networks.
文摘Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.
基金supported in part by National Basic Research Program of China(973 Program)(2010CB731803)National Natural Science Foundation of China(61375105)+2 种基金China Postdoctoral Science Foundation Funded Project(2015M570235)Youth Foundation of Hebei Educational Committee(QN2015187)Science Foundation of Yanshan University(B832,14LGA010)
基金Supported by the National Natural Science Foundation of China(No.60803148,60973124)
文摘Actors'relocation is utilized during the network initialization to enhance real-time performance of wireless sensor and actor networks(WSANs)which is an important issue of WSANs.The actor deployment problem in WSANs is proved NP-Hard whether the amount of actors is redundant or not,but to the best of our knowledge,no effective distributed algorithms in previous research can solve the problem.Thus two actor deployment strategies which need not the boundary control compared with present deployment strategies are proposed to solve this problem approximately based on the Voronoi diagram.Through simulation experiment,the results show that our distributed strategies are more effective than the present deployment strategies in terms of real-time performance,convergence time and energy consumption.
文摘针对SAS模式下现有WSNs(Wireless Sensor Networks)路由协议不能很好地满足WSANs(Wireless Sensor and Actor Net-works)应用的需求的问题,利用J-Sim对WSANs的仿真功能,设计并实现了适应SAS模式的WSANs路由协议BHOER,同时给出了仿真数据及性能分析,实验结果表明BHOER很好地满足了WSANs的路由需求。
基金Project supported by the National Key Technology R&D Program of China(No.2012BAJ07B03)the National Natural Science Foundation of China(Nos.51178415 and 51578491)
文摘One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.
基金supported by the National Natural Science Foundation of China(No.61174070)the Specialized Research Fund for the Doctoral Program(No.20110172110033)
文摘Wireless sensor and actuator networks (WSANs) have a wide range of applications. To perform effective sensing and acting tasks, multiple coordination mechanisms among the nodes are required. As attempt in this direction, this paper describes collaborative estimation and control algorithms design for WSANs. First, a sensor-actuator coordination model is proposed based on distributed Kalman filter in federated configuration. This method provides the capability of fault tolerance and multi-source information fusion. On this basis, an actuator-actuator coordination model based on even-driven task allocation is introduced. Actuators utilize fused sensory information to adjust their action that incur the minimum energy cost to the system subject to the constraints that user's preferences regarding the states of the system are approximately satisfied. Finally, according to system requirements, a distributed algorithm is proposed to solve the task allocation problem. Simulations demonstrate the effectiveness of our proposed methods.