HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The se...HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.展开更多
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra...In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.展开更多
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki...Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protoco...As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.展开更多
Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the...Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.展开更多
Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to s...Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.展开更多
Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In ...Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.展开更多
A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communica...A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.展开更多
For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanentl...For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
Data aggregation technology reduces traffic overhead of wireless sensor network and extends effective working time of the network,yet continued operation of wireless sensor networks increases the probability of aggreg...Data aggregation technology reduces traffic overhead of wireless sensor network and extends effective working time of the network,yet continued operation of wireless sensor networks increases the probability of aggregation nodes being captured and probability of aggregated data being tampered.Thus it will seriously affect the security performance of the network. For network security issues,a stateful public key based SDAM( secure data aggregation model) is proposed for wireless sensor networks( WSNs),which employs a new stateful public key encryption to provide efficient end-to-end security. Moreover,the security aggregation model will not impose any bound on the aggregation function property,so as to realize the low cost and high security level at the same time.展开更多
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering pr...Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.展开更多
Recently,the application of Wireless Sensor Networks(WSNs)has been increasing rapidly.It requires privacy preserving data aggregation protocols to secure the data from compromises.Preserving privacy of the sensor data...Recently,the application of Wireless Sensor Networks(WSNs)has been increasing rapidly.It requires privacy preserving data aggregation protocols to secure the data from compromises.Preserving privacy of the sensor data is a challenging task.This paper presents a non-linear regression-based data aggregation protocol for preserving privacy of the sensor data.The proposed protocol uses non-linear regression functions to represent the sensor data collected from the sensor nodes.Instead of sending the complete data to the cluster head,the sensor nodes only send the coefficients of the non-linear function.This will reduce the communication overhead of the network.The data aggregation is performed on the masked coefficients and the sink node is able to retrieve the approximated results over the aggregated data.The analysis of experiment results shows that the proposed protocol is able to minimize communication overhead,enhance data aggregation accuracy,and preserve data privacy.展开更多
In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive conve...In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.展开更多
In-network data aggregation in wireless sensor network has been shown to improve scalability, prolong sensor network lifetimes and diminish computational demands. However, the node that plays the role of data aggregat...In-network data aggregation in wireless sensor network has been shown to improve scalability, prolong sensor network lifetimes and diminish computational demands. However, the node that plays the role of data aggregation will consume much more energy than common nodes and may quit the mission in advance due to energy exhausting because of taxing decryption and re-encryption operation; moreover, it will bring complex key management to ensure the security of the data and corresponding keys. This paper was designed specifically to address above problem based on the thought of privacy homomorphism, It can achieve the perfect security level equal to one-time pad with much lower energy consumption; moreover, it can be proved to resist the attack of node capture. Using the simulation and analysis, we show that our scheme consume the energy only about 21% of AED scheme.展开更多
The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mecha...The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.展开更多
In wireless sensor networks, data missing is a common problem due to sensor faults, time synchronization, malicious attacks, and communication malfunctions, which may degrade the network' s performance or lead to ine...In wireless sensor networks, data missing is a common problem due to sensor faults, time synchronization, malicious attacks, and communication malfunctions, which may degrade the network' s performance or lead to inefficient decisions. Therefore, it is necessary to effectively estimate the missing data. A double weighted least squares support vector machines (DWLS-SVM) model for the missing data estimation in wireless sensor networks is proposed in this paper. The algo- rithm first applies the weighted LS-SVM (WLS-SVM) to estimate the missing data on temporal do- main and spatial domain respectively, and then uses the weighted average of these two candidates as the final estimated value. DWLS-SVM considers the possibility of outliers in the dataset and utilizes spatio-temporal dependencies among sensor nodes fully, which makes the estimate more robust and precise. Experimental results on real world dataset demonstrate that the proposed algorithm is outli- er robust and can estimate the missing values accurately.展开更多
The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based o...The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.展开更多
基金Project(07JJ1010) supported by Hunan Provincial Natural Science Foundation of ChinaProjects(2006AA01Z202, 2006AA01Z199) supported by the National High-Tech Research and Development Program of China+2 种基金Project(7002102) supported by the City University of Hong Kong, Strategic Research Grant (SRG)Project(IRT-0661) supported by the Program for Changjiang Scholars and Innovative Research Team in UniversityProject(NCET-06-0686) supported by the Program for New Century Excellent Talents in University
文摘HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.
基金supported by the National Natural Science Foundation of China(No.61871400)the Natural Science Foundation of the Jiangsu Province of China(No.BK20171401)。
文摘In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.
基金supported by the National Natural Science Foundation of China(NSFC)(61831002,62001076)the General Program of Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0726,No.cstc2020jcyjmsxmX0878).
文摘Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
基金partially supported by the National Natural Science Foundation of China(61571004)the Shanghai Natural Science Foundation(No.17ZR1429100)+1 种基金the National Science and Technology Major Project of China(No.2018ZX03001017-004)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.
基金This work is supported by the National Natural Science Foundation of China(61772454,61811530332,61811540410,U1836208).
文摘Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.
基金supported in part by the National Natural Science Foundation of China(No.61272084,61202004)the Natural Science Foundation of Jiangsu Province(No.BK20130096)the Project of Natural Science Research of Jiangsu University(No.14KJB520031,No.11KJA520002)
文摘Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work.
文摘Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.
文摘A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.
基金This work was supported by The National Natural Science Fund of China(Grant No.31670554)The Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161527)+1 种基金We also received three Projects Funded by The Project funded by China Postdoctoral Science Foundation(Grant Nos.2018T110505,2017M611828)The Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.
文摘For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
基金Support by the National High Technology Research and Development Program of China(No.2012AA120802)the National Natural Science Foundation of China(No.61302074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20122301120004)Natural Science Foundation of Heilongjiang Province(No.QC2013C061)
文摘Data aggregation technology reduces traffic overhead of wireless sensor network and extends effective working time of the network,yet continued operation of wireless sensor networks increases the probability of aggregation nodes being captured and probability of aggregated data being tampered.Thus it will seriously affect the security performance of the network. For network security issues,a stateful public key based SDAM( secure data aggregation model) is proposed for wireless sensor networks( WSNs),which employs a new stateful public key encryption to provide efficient end-to-end security. Moreover,the security aggregation model will not impose any bound on the aggregation function property,so as to realize the low cost and high security level at the same time.
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金Projects(61173169,61103203)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Post-doctoral Program and the Freedom Explore Program of Central South University,China
文摘Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.
文摘Recently,the application of Wireless Sensor Networks(WSNs)has been increasing rapidly.It requires privacy preserving data aggregation protocols to secure the data from compromises.Preserving privacy of the sensor data is a challenging task.This paper presents a non-linear regression-based data aggregation protocol for preserving privacy of the sensor data.The proposed protocol uses non-linear regression functions to represent the sensor data collected from the sensor nodes.Instead of sending the complete data to the cluster head,the sensor nodes only send the coefficients of the non-linear function.This will reduce the communication overhead of the network.The data aggregation is performed on the masked coefficients and the sink node is able to retrieve the approximated results over the aggregated data.The analysis of experiment results shows that the proposed protocol is able to minimize communication overhead,enhance data aggregation accuracy,and preserve data privacy.
基金The National Key R&D Program of China(No.2018YFB1500800)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2019025)+1 种基金Pre-Research Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414190405)the Open Project of the Key Laboratory of Wireless Sensor Network&Communication of Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences(No.20190907).
文摘In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.
基金Supported by the National Natural Science Foun-dation of China (90304015)
文摘In-network data aggregation in wireless sensor network has been shown to improve scalability, prolong sensor network lifetimes and diminish computational demands. However, the node that plays the role of data aggregation will consume much more energy than common nodes and may quit the mission in advance due to energy exhausting because of taxing decryption and re-encryption operation; moreover, it will bring complex key management to ensure the security of the data and corresponding keys. This paper was designed specifically to address above problem based on the thought of privacy homomorphism, It can achieve the perfect security level equal to one-time pad with much lower energy consumption; moreover, it can be proved to resist the attack of node capture. Using the simulation and analysis, we show that our scheme consume the energy only about 21% of AED scheme.
基金Supported by National Natural Science Foundation of P. R. China (60434030, 60673178)
文摘The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.
基金Supported by Basic Research Foundation of Beijing Institute of Technology (20070542009)
文摘In wireless sensor networks, data missing is a common problem due to sensor faults, time synchronization, malicious attacks, and communication malfunctions, which may degrade the network' s performance or lead to inefficient decisions. Therefore, it is necessary to effectively estimate the missing data. A double weighted least squares support vector machines (DWLS-SVM) model for the missing data estimation in wireless sensor networks is proposed in this paper. The algo- rithm first applies the weighted LS-SVM (WLS-SVM) to estimate the missing data on temporal do- main and spatial domain respectively, and then uses the weighted average of these two candidates as the final estimated value. DWLS-SVM considers the possibility of outliers in the dataset and utilizes spatio-temporal dependencies among sensor nodes fully, which makes the estimate more robust and precise. Experimental results on real world dataset demonstrate that the proposed algorithm is outli- er robust and can estimate the missing values accurately.
基金key project of the National Natural Science Foundation of China,Information Acquirement and Publish System of Shipping Lane in Harbor,the fund of Beijing Science and Technology Commission Network Monitoring and Application Demonstration in Food Security,the Program for New Century Excellent Talents in University,National Natural Science Foundation of ChinaProject,Fundamental Research Funds for the Central Universities
文摘The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.