A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac...A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.展开更多
To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of t...To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes in...In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.展开更多
In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under t...In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.展开更多
Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organizat...Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,展开更多
In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy...In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity...This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.展开更多
In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network pe...In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.展开更多
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-ener...The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.展开更多
In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to a...In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.展开更多
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between...Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).展开更多
In this paper, we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network. The computational complexity is only O(n)...In this paper, we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network. The computational complexity is only O(n). We also established the coverage collision detection and back-off mechanism applied in the wireless sensor network. The simulation results show that the system can cover all the interested area with the smallest number of nodes and a coverage void will not appear during the course of state-transition. The coverage collision detection and back-off mechanism proposed in this article can be applied when the nodes have either synchronous or asynchronous mechanism. It also provides a stable stage with the length of the time that can be adjusted.展开更多
Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malwar...Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.展开更多
Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,whi...Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.展开更多
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA01Z221)the NationalNatural Science Foundation of China (No.60875070)+1 种基金the Innovation Project of Graduate Students of Jiangsu Province (No.CX08B-049Z)Southeast University Teaching and Research Foundation
文摘A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.
基金Supported by National 863 Plan Project (2008AA10Z220 )Key Technological Task Project of Henan Agricultural Domain(082102140004)~~
文摘To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403336)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2015203342 and F2015203291)the Independent Research Project Topics B Category for Young Teacher of Yanshan University,China(Grant No.15LGB007)
文摘In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.
基金supported by the National Natural Science Foundation of China(Nos.52201403,52201401,52071200,52102397,61701299,51709167)the National Key Research and Development Program(No.2021YFC2801002)+4 种基金the China Postdoctoral Science Foundation(Nos.2021M 700790,2022M712027)the Fund of National Engineering Research Center for Water Transport Safety(No.A2022003)the Foundation for Jiangsu Key Laboratory of Traffic and Transportation Security(No.TTS2021-05)the Fund of Hubei Key Laboratory of Inland Shipping Technology(No.NHHY2021002)the Top-Notch Innovative Program for Postgraduates of Shanghai Maritime University(Nos.2019YBR006,2019YBR002).
文摘In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.
文摘Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,
文摘In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
基金Supported by 973 Program (2007CB310607)National Natural Science Foundation of China (60772062)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200813)
文摘This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.
基金supported in part by National Key Basic Research Program of China(973 program)under Grant No.2007CB307101National Natural Science Foundation of China under Grant No.60833002,60802016,60972010
文摘In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.
基金supported by by National Natural Science Founda-tion of China (No. 60702055)Program for New Century ExcellentTalents in University (NCET-07-0914)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ070521)
文摘The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.
文摘In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.
文摘Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).
文摘In this paper, we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network. The computational complexity is only O(n). We also established the coverage collision detection and back-off mechanism applied in the wireless sensor network. The simulation results show that the system can cover all the interested area with the smallest number of nodes and a coverage void will not appear during the course of state-transition. The coverage collision detection and back-off mechanism proposed in this article can be applied when the nodes have either synchronous or asynchronous mechanism. It also provides a stable stage with the length of the time that can be adjusted.
基金National Natural Science Foundation of China(No.61772018)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)。
文摘Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.
基金This research work was supported by the National Natural Science Foundation of China(61772454,61811530332).Professor Gwang-jun Kim is the corresponding author.
文摘Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering