Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack o...Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack of election limit, this paper proposes a novel clustering routing algorithm for self-energized WSNs clustering routing algorithm based on solar energy harvesting(CRBS) algorithm. The algorithm puts forward a threshold sensitive resurrection mechanism, reviving the node when harvesting energy reaches the set soft or hard energy threshold. Meanwhile, combined with current energy harvesting level, cluster head node can decide whether to reappoint the cluster head in the next round. What's more, CRBS optimizes the cluster head election threshold to limit the incompetent node in election. Combined with the solar energy harvesting simulation, the results show that CRBS algorithm can better keep the default cluster head proportion, and outperforms energy balanced clustering with self-energization(EBCS) algorithm in terms of surviving nodes number and the success ratio of data transmission展开更多
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep...Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.展开更多
基金supported by the Natural Science Foundation Project of CQ CSTC (2012jj A40040)the Changjiang Scholars and Innovative Research Team in University (IRT1299)the Special Fund of Chongqing Key Laboratory (CSTC)
文摘Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack of election limit, this paper proposes a novel clustering routing algorithm for self-energized WSNs clustering routing algorithm based on solar energy harvesting(CRBS) algorithm. The algorithm puts forward a threshold sensitive resurrection mechanism, reviving the node when harvesting energy reaches the set soft or hard energy threshold. Meanwhile, combined with current energy harvesting level, cluster head node can decide whether to reappoint the cluster head in the next round. What's more, CRBS optimizes the cluster head election threshold to limit the incompetent node in election. Combined with the solar energy harvesting simulation, the results show that CRBS algorithm can better keep the default cluster head proportion, and outperforms energy balanced clustering with self-energization(EBCS) algorithm in terms of surviving nodes number and the success ratio of data transmission
文摘Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.