Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin...Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.展开更多
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("...To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.展开更多
Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences ...Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.展开更多
The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in C...The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in CH selection inhibits it from attaining enhanced lifetime. CBCH ensures maximum network lifetime when CH is close to the centroid of the cluster. However, for a widely distributed network, CBCH results in small sized clusters increasing the inter cluster communication cost. Hence, with an objective to enhance the network lifetime, a fuzzy based two-level hierarchical routing protocol is proposed. The novelty of the proposal lies in identification of appropriate parameters used in Cluster Head and Super Cluster Head selection. Experiments for different network scenarios are performed through both simulation and hardware to validate the proposal. The performance of the network is evaluated in terms of Node Death. The proposal is compared with F-SCH and the results reveal the efficacy of the proposal in enhancing the lifetime of network.展开更多
By using hyper-graph theory,this paper proposes a QoS adaptive topology configuration(QATC) algorithm to effectively control large-scale topology and achieve robust data transmitting in synchronous wireless sensor net...By using hyper-graph theory,this paper proposes a QoS adaptive topology configuration(QATC) algorithm to effectively control large-scale topology and achieve robust data transmitting in synchronous wireless sensor networks.Firstly,a concise hyper-graph model is abstracted to analyze the large-scale and high-connectivity network.Secondly,based on the control theory of biologic 'Cell Mergence',a novel self-adaptive topology configuration algorithm is used to build homologous perceptive data logic sub-network ...展开更多
A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifet...A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.展开更多
Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their c...Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.展开更多
Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunitie...Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.展开更多
In this paper,an Adaptive-Weighted Time-Dimensional and Space-Dimensional(AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving t...In this paper,an Adaptive-Weighted Time-Dimensional and Space-Dimensional(AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving the accuracy of the data gathered in the network.AWTDSD contains three phases:(1) the time-dimensional aggregation phase for eliminating the data redundancy;(2) the adaptive-weighted aggregation phase for further aggregating the data as well as improving the accuracy of the aggregated data; and(3) the space-dimensional aggregation phase for reducing the size and the amount of the data transmission to the base station.AWTDSD utilizes the correlations between the sensed data for reducing the data transmission and increasing the data accuracy as well.Experimental result shows that AWTDSD can not only save almost a half of the total energy consumption but also greatly increase the accuracy of the data monitored by the sensors in the clustered network.展开更多
Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless senso...Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.展开更多
Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are in...Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are interested in the study and the proposal of a solution allowing distributed sensor nodes to communicate with each other in an optimal way adapted to the specific application constraints. More precisely, we want to build a wireless network that consists of several short range sensor nodes exchanging data between them according to a communication protocol at MAC (Medium Access Control) level. This protocol must be able to optimize energy consumption, transmission time and loss of information. To achieve this objective, we have analyzed the advantages and the limitations of WSN (Wireless Sensor Network) technologies and communication protocols currently used in relation to the requirements of our application. Then we proposed a deterministic, adaptive and energy saving medium access method based on the IEEE 802.15.4 physical layer and a mesh topology. It ensures the message delivery time with strongly limited collision risk due to the spatial reuse of medium in the two-hop neighbourhood. This proposal was characterized by modelling and simulation using OPNET network simulator. Finally we implemented the proposed mechanisms on hardware devices and deployed a sensors network in real situation to verify the accuracy of the model and evaluate the proposal according to different test configurations.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w...Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication r...The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
基金partly supported by the Agency for Science,Technology and Research(A*Star)SERC(No.0521010037,0521210082)
文摘Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.
基金Project (No. 30470461) supported in part by the National NaturalScience Foundation of China
文摘To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.
基金Supported by Major Projects of the National Science and Technology (2010ZX03003-003-02) National 973 Key Project (2011CB302903)
文摘Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.
文摘The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in CH selection inhibits it from attaining enhanced lifetime. CBCH ensures maximum network lifetime when CH is close to the centroid of the cluster. However, for a widely distributed network, CBCH results in small sized clusters increasing the inter cluster communication cost. Hence, with an objective to enhance the network lifetime, a fuzzy based two-level hierarchical routing protocol is proposed. The novelty of the proposal lies in identification of appropriate parameters used in Cluster Head and Super Cluster Head selection. Experiments for different network scenarios are performed through both simulation and hardware to validate the proposal. The performance of the network is evaluated in terms of Node Death. The proposal is compared with F-SCH and the results reveal the efficacy of the proposal in enhancing the lifetime of network.
基金Supported by National Natural Science Foundation of China (No.60702037)Specialized Research Fund for Doctoral Program of Higher Education of China (No.20070056129)Natural Science Foundation of Tianjin (No.09JCYBJC00800)
文摘By using hyper-graph theory,this paper proposes a QoS adaptive topology configuration(QATC) algorithm to effectively control large-scale topology and achieve robust data transmitting in synchronous wireless sensor networks.Firstly,a concise hyper-graph model is abstracted to analyze the large-scale and high-connectivity network.Secondly,based on the control theory of biologic 'Cell Mergence',a novel self-adaptive topology configuration algorithm is used to build homologous perceptive data logic sub-network ...
基金Projects(61101104,61100213) supported by the National Natural Science Foundation of ChinaProject(NY211050) supported by Fund of Nanjing University of Posts and Telecommunications,China
文摘A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.
文摘Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.
文摘Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.
基金Supported by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2010DX010)the Project of Higher Educational Science and Technology Program of Shandong Province(No.J12LN36)
文摘In this paper,an Adaptive-Weighted Time-Dimensional and Space-Dimensional(AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving the accuracy of the data gathered in the network.AWTDSD contains three phases:(1) the time-dimensional aggregation phase for eliminating the data redundancy;(2) the adaptive-weighted aggregation phase for further aggregating the data as well as improving the accuracy of the aggregated data; and(3) the space-dimensional aggregation phase for reducing the size and the amount of the data transmission to the base station.AWTDSD utilizes the correlations between the sensed data for reducing the data transmission and increasing the data accuracy as well.Experimental result shows that AWTDSD can not only save almost a half of the total energy consumption but also greatly increase the accuracy of the data monitored by the sensors in the clustered network.
文摘Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.
文摘Monitoring behaviour of the elderly and the disabled living alone has become a major public health problem in our modern societies. Among the various scientific aspects involved in the home monitoring field, we are interested in the study and the proposal of a solution allowing distributed sensor nodes to communicate with each other in an optimal way adapted to the specific application constraints. More precisely, we want to build a wireless network that consists of several short range sensor nodes exchanging data between them according to a communication protocol at MAC (Medium Access Control) level. This protocol must be able to optimize energy consumption, transmission time and loss of information. To achieve this objective, we have analyzed the advantages and the limitations of WSN (Wireless Sensor Network) technologies and communication protocols currently used in relation to the requirements of our application. Then we proposed a deterministic, adaptive and energy saving medium access method based on the IEEE 802.15.4 physical layer and a mesh topology. It ensures the message delivery time with strongly limited collision risk due to the spatial reuse of medium in the two-hop neighbourhood. This proposal was characterized by modelling and simulation using OPNET network simulator. Finally we implemented the proposed mechanisms on hardware devices and deployed a sensors network in real situation to verify the accuracy of the model and evaluate the proposal according to different test configurations.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
基金Hubei Provincial Natural Science Foundation of China under Grant No.2017CKB893Wuhan Polytechnic University Reform Subsidy Project Grant No.03220153.
文摘Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project.
文摘The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.