A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac...A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,whi...Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity...This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.展开更多
In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after t...In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.展开更多
The need for effective and efficient monitoring, evaluation and control of water quality in Lake Victoria Basin (LVB) has become more demanding in this era of urbanization, population growth and climate change and var...The need for effective and efficient monitoring, evaluation and control of water quality in Lake Victoria Basin (LVB) has become more demanding in this era of urbanization, population growth and climate change and variability. Traditional methods that rely on collecting water samples, testing and analyses in water laboratories are not only costly but also lack capability for real-time data capture, analyses and fast dissemination of information to relevant stakeholders for making timely and informed decisions. In this paper, a Water Sensor Network (WSN) system prototype developed for water quality monitoring in LVB is presented. The development was preceded by evaluation of prevailing environment including availability of cellular network coverage at the site of operation. The system consists of an Arduino microcontroller, water quality sensors, and a wireless network connection module. It detects water temperature, dissolved oxygen, pH, and electrical conductivity in real-time and disseminates the information in graphical and tabular formats to relevant stakeholders through a web-based portal and mobile phone platforms. The experimental results show that the system has great prospect and can be used to operate in real world environment for optimum control and protection of water resources by providing key actors with relevant and timely information to facilitate quick action taking.展开更多
In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network pe...In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.展开更多
Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location i...Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average ocation error.展开更多
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-ener...The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.展开更多
For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm c...For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.展开更多
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne...Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.展开更多
In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to a...In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.展开更多
Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its...Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its low encoding complex- ity. To achieve a good Rate-Distortion (R-D) per- formance, the current WZVC paradi^prls usually a- dopt an end-to-end rate control scheme in which the decoder repeatedly requests the additional deco- ding data from the encoder for decoding Wyner-Ziv frames. Therefore, the waiting time of the additional decoding data is especially long in multihop WVSNs. In this paper, we propose a novel pro- gressive in-network rate control scheme for WZVC. The proposed in-network puncturing-based rate control scheme transfers the partial channel codes puncturing task from the encoder to the relay nodes. Then, the decoder can request the addition- al decoding data from the relay nodes instead of the encoder, and the total waiting time for deco- ding Wyner-Ziv frames is reduced consequently. Simulation results validate the proposed rate con- trol scheme.展开更多
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important...The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.展开更多
This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control...This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control which imitates the ant colony foraging behavior. Sensor nodes choose routings according to the pheromone density. The experiment result shows that the algorithm balances the energy consumption of each node. It mitigated congestion effectively with the proposed routing protocol.展开更多
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA01Z221)the NationalNatural Science Foundation of China (No.60875070)+1 种基金the Innovation Project of Graduate Students of Jiangsu Province (No.CX08B-049Z)Southeast University Teaching and Research Foundation
文摘A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金This research work was supported by the National Natural Science Foundation of China(61772454,61811530332).Professor Gwang-jun Kim is the corresponding author.
文摘Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
基金Supported by 973 Program (2007CB310607)National Natural Science Foundation of China (60772062)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200813)
文摘This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.
文摘In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.
文摘The need for effective and efficient monitoring, evaluation and control of water quality in Lake Victoria Basin (LVB) has become more demanding in this era of urbanization, population growth and climate change and variability. Traditional methods that rely on collecting water samples, testing and analyses in water laboratories are not only costly but also lack capability for real-time data capture, analyses and fast dissemination of information to relevant stakeholders for making timely and informed decisions. In this paper, a Water Sensor Network (WSN) system prototype developed for water quality monitoring in LVB is presented. The development was preceded by evaluation of prevailing environment including availability of cellular network coverage at the site of operation. The system consists of an Arduino microcontroller, water quality sensors, and a wireless network connection module. It detects water temperature, dissolved oxygen, pH, and electrical conductivity in real-time and disseminates the information in graphical and tabular formats to relevant stakeholders through a web-based portal and mobile phone platforms. The experimental results show that the system has great prospect and can be used to operate in real world environment for optimum control and protection of water resources by providing key actors with relevant and timely information to facilitate quick action taking.
基金supported in part by National Key Basic Research Program of China(973 program)under Grant No.2007CB307101National Natural Science Foundation of China under Grant No.60833002,60802016,60972010
文摘In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.
文摘Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average ocation error.
基金supported by by National Natural Science Founda-tion of China (No. 60702055)Program for New Century ExcellentTalents in University (NCET-07-0914)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ070521)
文摘The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA001210) and the National Natural Science Foundation of China (No. 60532030).
文摘For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.
文摘Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.
基金This paper was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302701 the National Natural Science Foundation of China under Grants No. 60833009, No. 61133015+2 种基金 the China National Funds for Distinguished Young Scientists under Grant No. 60925010 the Funds for Creative Research Groups of China under Grant No. 61121001 the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1049.
文摘Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its low encoding complex- ity. To achieve a good Rate-Distortion (R-D) per- formance, the current WZVC paradi^prls usually a- dopt an end-to-end rate control scheme in which the decoder repeatedly requests the additional deco- ding data from the encoder for decoding Wyner-Ziv frames. Therefore, the waiting time of the additional decoding data is especially long in multihop WVSNs. In this paper, we propose a novel pro- gressive in-network rate control scheme for WZVC. The proposed in-network puncturing-based rate control scheme transfers the partial channel codes puncturing task from the encoder to the relay nodes. Then, the decoder can request the addition- al decoding data from the relay nodes instead of the encoder, and the total waiting time for deco- ding Wyner-Ziv frames is reduced consequently. Simulation results validate the proposed rate con- trol scheme.
文摘The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.
文摘This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control which imitates the ant colony foraging behavior. Sensor nodes choose routings according to the pheromone density. The experiment result shows that the algorithm balances the energy consumption of each node. It mitigated congestion effectively with the proposed routing protocol.