Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such ...Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d...Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.展开更多
Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.展开更多
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec...Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.展开更多
Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, sma...Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, smart grid and pipeline monitoring. In addition, few researchers have been experimenting with WSN in many mission-critical applications such as military applications. This paper surveys the literature for experimenting work done in border surveillance and intrusion detection using the technology of WSN. The potential benefits of using WSN in border surveillance are huge;however, up to our knowledge very few attempts of solving many critical issues about this application could be found in the literature.展开更多
Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networ...Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the al...Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.展开更多
Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the...Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the limited resource, intrusion detection system (IDS) runs all the time to detect intrusion of the attacker which is a costly overhead. In our model, we use game theory to model the interactions between the intrusion detection system and the attacker, and a realistic model is given by using Bayesian game. We solve the game by finding the Bayesian Nash equilibrium. The results of our analysis show that the IDS could work intermittently without compromising on its effectiveness. At the end of this paper, we provide an experiment to verify the rationality and effectiveness of the proposed model.展开更多
For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists ...For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.展开更多
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w...As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.展开更多
With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wirele...With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of c...In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.展开更多
Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traff...Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traffic features with high information gain are primarily found in data link layers rather than application layers in wired networks.This survey investigates some of the complexities and challenges in deploying wireless IDS in terms of data collection methods,IDS techniques,IDS placement strategies,and traffic data analysis techniques.This paper’s main finding highlights the lack of available network traces for training modern machine-learning models against IoT specific intrusions.Specifically,the Knowledge Discovery in Databases(KDD)Cup dataset is reviewed to highlight the design challenges of wireless intrusion detection based on current data attributes and proposed several guidelines to future-proof following traffic capture methods in the wireless network(WN).The paper starts with a review of various intrusion detection techniques,data collection methods and placement methods.The main goal of this paper is to study the design challenges of deploying intrusion detection system in a wireless environment.Intrusion detection system deployment in a wireless environment is not as straightforward as in the wired network environment due to the architectural complexities.So this paper reviews the traditional wired intrusion detection deployment methods and discusses how these techniques could be adopted into the wireless environment and also highlights the design challenges in the wireless environment.The main wireless environments to look into would be Wireless Sensor Networks(WSN),Mobile Ad Hoc Networks(MANET)and IoT as this are the future trends and a lot of attacks have been targeted into these networks.So it is very crucial to design an IDS specifically to target on the wireless networks.展开更多
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne...Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.展开更多
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important...The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.展开更多
A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (...A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.展开更多
Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of...Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of acoustic data. However, those microphone sensors are needed to be placed close with sound source and cannot detect sound signal through certain obstacles. To overcome the shortcomings of microphone sensor, we develop a new type of bioradar sensor to achieve non-contact speech detection and investigate theoretically the mechanism of bioradar for speech detection. Results show that the system can successfully detect speech at some distance and even through non-metallic objects with certain thickness. In addition, in order to suppress the noise and improve the quality of the detected speech, we use spectral subtraction and Wiener filtering algorithm respectively to enhance the bioradar speech and evaluate the performance of the two methods using spectrogram.展开更多
基金This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University。
文摘Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.
文摘Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs.
文摘Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.
基金Acknowledgements Project supported by the National Natural Science Foundation of China (Grant No.60932003), the National High Technology Development 863 Program of China (Grant No.2007AA01Z452, No. 2009AA01 Z118 ), Project supported by Shanghai Municipal Natural Science Foundation (Grant No.09ZRI414900), National Undergraduate Innovative Test Program (091024812).
文摘Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.
文摘Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, smart grid and pipeline monitoring. In addition, few researchers have been experimenting with WSN in many mission-critical applications such as military applications. This paper surveys the literature for experimenting work done in border surveillance and intrusion detection using the technology of WSN. The potential benefits of using WSN in border surveillance are huge;however, up to our knowledge very few attempts of solving many critical issues about this application could be found in the literature.
基金Supported by the National High Technology Research and Development Program (No. 2009AA011504)
文摘Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
文摘Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.
文摘Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the limited resource, intrusion detection system (IDS) runs all the time to detect intrusion of the attacker which is a costly overhead. In our model, we use game theory to model the interactions between the intrusion detection system and the attacker, and a realistic model is given by using Bayesian game. We solve the game by finding the Bayesian Nash equilibrium. The results of our analysis show that the IDS could work intermittently without compromising on its effectiveness. At the end of this paper, we provide an experiment to verify the rationality and effectiveness of the proposed model.
基金The National Natural Science Foundation of China(No.61601122,61471164,61741102)
文摘For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.
基金the Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.20050248043)
文摘As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing.
基金the supports of the National Natural Science Foundation of China (60403027) the projects of science and research plan of Hubei provincial department of education (2003A011)the Natural Science Foundation Of Hubei Province of China (2005ABA243).
文摘With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
基金National Natural Science Foundations of China (No.61073177,60905037)
文摘In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.
基金The authors acknowledge Jouf University,Saudi Arabia for his funding support.
文摘Internet of Things(IoT)devices work mainly in wireless mediums;requiring different Intrusion Detection System(IDS)kind of solutions to leverage 802.11 header information for intrusion detection.Wireless-specific traffic features with high information gain are primarily found in data link layers rather than application layers in wired networks.This survey investigates some of the complexities and challenges in deploying wireless IDS in terms of data collection methods,IDS techniques,IDS placement strategies,and traffic data analysis techniques.This paper’s main finding highlights the lack of available network traces for training modern machine-learning models against IoT specific intrusions.Specifically,the Knowledge Discovery in Databases(KDD)Cup dataset is reviewed to highlight the design challenges of wireless intrusion detection based on current data attributes and proposed several guidelines to future-proof following traffic capture methods in the wireless network(WN).The paper starts with a review of various intrusion detection techniques,data collection methods and placement methods.The main goal of this paper is to study the design challenges of deploying intrusion detection system in a wireless environment.Intrusion detection system deployment in a wireless environment is not as straightforward as in the wired network environment due to the architectural complexities.So this paper reviews the traditional wired intrusion detection deployment methods and discusses how these techniques could be adopted into the wireless environment and also highlights the design challenges in the wireless environment.The main wireless environments to look into would be Wireless Sensor Networks(WSN),Mobile Ad Hoc Networks(MANET)and IoT as this are the future trends and a lot of attacks have been targeted into these networks.So it is very crucial to design an IDS specifically to target on the wireless networks.
文摘Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.
文摘The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.
文摘A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.
文摘Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of acoustic data. However, those microphone sensors are needed to be placed close with sound source and cannot detect sound signal through certain obstacles. To overcome the shortcomings of microphone sensor, we develop a new type of bioradar sensor to achieve non-contact speech detection and investigate theoretically the mechanism of bioradar for speech detection. Results show that the system can successfully detect speech at some distance and even through non-metallic objects with certain thickness. In addition, in order to suppress the noise and improve the quality of the detected speech, we use spectral subtraction and Wiener filtering algorithm respectively to enhance the bioradar speech and evaluate the performance of the two methods using spectrogram.