Objective:To forward the magnetic resonance imaging(MRI)based distance between the deepest tumor invasion and mesorectal fascia(DMRF),and to explore its prognosis differentiation value in cT3 stage rectal cancer with ...Objective:To forward the magnetic resonance imaging(MRI)based distance between the deepest tumor invasion and mesorectal fascia(DMRF),and to explore its prognosis differentiation value in cT3 stage rectal cancer with comparison of cT3 substage.Methods:This was a retrospective,multicenter cohort study including cT3 rectal cancer patients undergoing neoadjuvant chemoradiotherapy followed by radical surgery from January 2013 to September 2014.DMRF and cT3 substage were evaluated from baseline MRI.The cutoff of DMRF was determined by disease progression.Multivariate cox regression was used to test the prognostic values of baseline variables.Results:A total of 804 patients were included,of which 226(28.1%)developed progression.A DMRF cutoff of7 mm was chosen.DMRF category,the clock position of the deepest position of tumor invasion(CDTI)and extramural venous invasion(EMVI)were independent predictors for disease progression,and hazard ratios(HRs)were 0.26[95%confidence interval(95%CI),0.13-0.56],1.88(95%CI,1.33-2.65)and 1.57(95%CI,1.13-2.18),respectively.cT3 substage was not a predictor for disease progression.Conclusions:The measurement of DMRF value on baseline MRI can better distinguish cT3 rectal cancer prognosis rather than cT3 substage,and was recommended in clinical evaluation.展开更多
Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2 virus.Many students and researchers have already attempted to use computer vision technology to automatically detect human beings...Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2 virus.Many students and researchers have already attempted to use computer vision technology to automatically detect human beings in the field of view of a camera and help enforce social distancing.However,because of the present lockdown measures in several countries,the validation of computer vision systems using large-scale datasets is a challenge.Methods In this paper,a new method is proposed for generating customized datasets and validating deep-learning-based computer vision models using virtual reality(VR)technology.Using VR,we modeled a digital twin(DT)of an existing office space and used it to create a dataset of individuals in different postures,dresses,and locations.To test the proposed solution,we implemented a convolutional neural network(CNN)model for detecting people in a limited-sized dataset of real humans and a simulated dataset of humanoid figures.Results We detected the number of persons in both the real and synthetic datasets with more than 90%accuracy,and the actual and measured distances were significantly correlated(r=0.99).Finally,we used intermittent-layer-and heatmap-based data visualization techniques to explain the failure modes of a CNN.Conclusions A new application of DTs is proposed to enhance workplace safety by measuring the social distance between individuals.The use of our proposed pipeline along with a DT of the shared space for visualizing both environmental and human behavior aspects preserves the privacy of individuals and improves the latency of such monitoring systems because only the extracted information is streamed.展开更多
Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)wit...Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)with core-shell structure is first formed by a facile strategy,followed by a selenization and carbonization strategy to finally prepare multileveled Mo WSe_(2)/WO_(3)/C anode materials with core-shell petal like curled nanosheet structure.Between the petal(MoSe_(2))-core(WO_(3))structure,the formation of WSe_(2)flakes by partial selenization on the surface of WO_(3)serves as a heterogeneous connection between MoSe_(2)and WO_(3).The enlarged layer distance(0.677 nm)between MoSe_(2)and WSe_(2)can facilitate the rapid transfer of Na+and electrons.The density functional theory(DFT)calculations verify that the Mo WSe_(2)/WO_(3)/C heterostructure performs excellent metallic properties.Ex-situ X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and transmission electron microscopy(TEM)confirm the activation process from the initial insertion reaction to the later conversion reaction.Resultantly,when employed as the anode of SIBs,a remarkable capacity of 384.3 mA h g-1after 950 cycles at 10 A g^(-1)is performed.Furthermore,the SICs assembled with commercial activated carbon(AC)as the cathode exhibits a remarkable energy density of 81.86 W h kg^(-1)(at 190 W kg^(-1))and 72.83 W h kg^(-1)(at 3800 W kg^(-1)).The unique structural design and the reaction investigation of the electrode process can provide a reference for the development of transition metal chalcogenides anodes.展开更多
Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting w...Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining...The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity.However,conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients,limiting reaction kinetics.We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity.This free-standing device structure also avoids short-circuiting without needing a separator.The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion.Starting with a 3D-printed interpenetrated polymer substrate,we metallize it to make it conductive.This substrate has two individually addressable electrodes,allowing selective electrodeposition of energy storage materials.Using a Zn//MnO_(2) battery as a model system,the interpenetrated device outperforms conventional separate electrode configurations,improving volumetric energy density by 221%and exhibiting a higher capacity retention rate of 49%compared to 35%at temperatures from 20 to 0℃.Our study introduces a new EESD architecture applicable to Li-ion,Na-ion batteries,supercapacitors,etc.展开更多
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
The paper introduces two typical 3G services:the mobile multimedia short message service and the streaming media service. The former is considered as a strong driving force to promote the development of 3G services an...The paper introduces two typical 3G services:the mobile multimedia short message service and the streaming media service. The former is considered as a strong driving force to promote the development of 3G services and applications.The latter is regarded as a typical service on future 3G networks.As supporting technologies of 3G services,open service architecture and open mobile architecture are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.82071881,91959116,81971584)National Key R&D Program of China(No.2019YFC0117705)+3 种基金Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support(No.ZYLX201803)Beijing Hospitals Authority Ascent Plan(No.DFL20191103)Capital’s Funds for Health Improvement and Research(No.2020-1-2151)Beijing Natural Science Foundation(No.Z200015,Z180001)。
文摘Objective:To forward the magnetic resonance imaging(MRI)based distance between the deepest tumor invasion and mesorectal fascia(DMRF),and to explore its prognosis differentiation value in cT3 stage rectal cancer with comparison of cT3 substage.Methods:This was a retrospective,multicenter cohort study including cT3 rectal cancer patients undergoing neoadjuvant chemoradiotherapy followed by radical surgery from January 2013 to September 2014.DMRF and cT3 substage were evaluated from baseline MRI.The cutoff of DMRF was determined by disease progression.Multivariate cox regression was used to test the prognostic values of baseline variables.Results:A total of 804 patients were included,of which 226(28.1%)developed progression.A DMRF cutoff of7 mm was chosen.DMRF category,the clock position of the deepest position of tumor invasion(CDTI)and extramural venous invasion(EMVI)were independent predictors for disease progression,and hazard ratios(HRs)were 0.26[95%confidence interval(95%CI),0.13-0.56],1.88(95%CI,1.33-2.65)and 1.57(95%CI,1.13-2.18),respectively.cT3 substage was not a predictor for disease progression.Conclusions:The measurement of DMRF value on baseline MRI can better distinguish cT3 rectal cancer prognosis rather than cT3 substage,and was recommended in clinical evaluation.
文摘Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2 virus.Many students and researchers have already attempted to use computer vision technology to automatically detect human beings in the field of view of a camera and help enforce social distancing.However,because of the present lockdown measures in several countries,the validation of computer vision systems using large-scale datasets is a challenge.Methods In this paper,a new method is proposed for generating customized datasets and validating deep-learning-based computer vision models using virtual reality(VR)technology.Using VR,we modeled a digital twin(DT)of an existing office space and used it to create a dataset of individuals in different postures,dresses,and locations.To test the proposed solution,we implemented a convolutional neural network(CNN)model for detecting people in a limited-sized dataset of real humans and a simulated dataset of humanoid figures.Results We detected the number of persons in both the real and synthetic datasets with more than 90%accuracy,and the actual and measured distances were significantly correlated(r=0.99).Finally,we used intermittent-layer-and heatmap-based data visualization techniques to explain the failure modes of a CNN.Conclusions A new application of DTs is proposed to enhance workplace safety by measuring the social distance between individuals.The use of our proposed pipeline along with a DT of the shared space for visualizing both environmental and human behavior aspects preserves the privacy of individuals and improves the latency of such monitoring systems because only the extracted information is streamed.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Key Research and Development Program of Hebei Province(20310601D,205A4401D)the Ministry of Higher Education of Malaysia for the Fundamental Research Grant(FRGS/1/2018/STG02/UM/02/10)awarded to Woo Haw Jiunn and University of Malaya research grant(GPF 038B-2018)。
文摘Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)with core-shell structure is first formed by a facile strategy,followed by a selenization and carbonization strategy to finally prepare multileveled Mo WSe_(2)/WO_(3)/C anode materials with core-shell petal like curled nanosheet structure.Between the petal(MoSe_(2))-core(WO_(3))structure,the formation of WSe_(2)flakes by partial selenization on the surface of WO_(3)serves as a heterogeneous connection between MoSe_(2)and WO_(3).The enlarged layer distance(0.677 nm)between MoSe_(2)and WSe_(2)can facilitate the rapid transfer of Na+and electrons.The density functional theory(DFT)calculations verify that the Mo WSe_(2)/WO_(3)/C heterostructure performs excellent metallic properties.Ex-situ X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and transmission electron microscopy(TEM)confirm the activation process from the initial insertion reaction to the later conversion reaction.Resultantly,when employed as the anode of SIBs,a remarkable capacity of 384.3 mA h g-1after 950 cycles at 10 A g^(-1)is performed.Furthermore,the SICs assembled with commercial activated carbon(AC)as the cathode exhibits a remarkable energy density of 81.86 W h kg^(-1)(at 190 W kg^(-1))and 72.83 W h kg^(-1)(at 3800 W kg^(-1)).The unique structural design and the reaction investigation of the electrode process can provide a reference for the development of transition metal chalcogenides anodes.
基金National Natural Science Foundation of China(61732016).
文摘Three-dimensional(3D)modeling is an important topic in computer graphics and computer vision.In recent years,the introduction of consumer-grade depth cameras has resulted in profound advances in 3D modeling.Starting with the basic data structure,this survey reviews the latest developments of 3D modeling based on depth cameras,including research works on camera tracking,3D object and scene reconstruction,and high-quality texture reconstruction.We also discuss the future work and possible solutions for 3D modeling based on the depth camera.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
基金financial support from the Center for Coastal Climate Resilience of the University of California,Santa Cruz(UCSC)This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No.DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development award 23-SI-002.IM release number:LLNL-JRNL-862347。
文摘The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices(EESDs)by increasing surface area,thickness,and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity.However,conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients,limiting reaction kinetics.We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity.This free-standing device structure also avoids short-circuiting without needing a separator.The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion.Starting with a 3D-printed interpenetrated polymer substrate,we metallize it to make it conductive.This substrate has two individually addressable electrodes,allowing selective electrodeposition of energy storage materials.Using a Zn//MnO_(2) battery as a model system,the interpenetrated device outperforms conventional separate electrode configurations,improving volumetric energy density by 221%and exhibiting a higher capacity retention rate of 49%compared to 35%at temperatures from 20 to 0℃.Our study introduces a new EESD architecture applicable to Li-ion,Na-ion batteries,supercapacitors,etc.
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.
文摘The paper introduces two typical 3G services:the mobile multimedia short message service and the streaming media service. The former is considered as a strong driving force to promote the development of 3G services and applications.The latter is regarded as a typical service on future 3G networks.As supporting technologies of 3G services,open service architecture and open mobile architecture are also discussed.