Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positi...Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm.展开更多
线性判别分析(Linear discriminant analysis,LDA)作为一种有监督的降维方法,已经广泛应用于各个领域。然而,传统的LDA存在以下缺点:1)LDA假设数据是高斯分布和单一模态的;2)LDA对异常值和噪声十分敏感;3)LDA的判别投影方向对特征的可...线性判别分析(Linear discriminant analysis,LDA)作为一种有监督的降维方法,已经广泛应用于各个领域。然而,传统的LDA存在以下缺点:1)LDA假设数据是高斯分布和单一模态的;2)LDA对异常值和噪声十分敏感;3)LDA的判别投影方向对特征的可解释性低且对降维数较为敏感。为克服以上问题,提出了基于信息熵的鲁棒稀疏子类判别分析(Robust sparse subclass discriminant analysis based on information entropy,RSSDAIE)新方法。具体而言,对每个类别划分不同数量的子类后,重新定义类内散射矩阵和类间散射矩阵,使其更适应现实数据。另外,引入L_(21)范数、稀疏矩阵和正交重构矩阵以确保RSSDAIE具有更高的鲁棒性、更好的可解释性和更低的维度敏感性。同时采用交替方向乘子法对目标函数求解,避免类内散射矩阵不可逆的情形。在多个数据集上进行了对比实验,证明了RSSDAIE在数据适用类型、降低噪声影响、减少降维数影响等方面更有优越性,分类准确率更高。展开更多
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金supported in part by the National Natural Science Foundation of China (51875457)Natural Science Foundation of Shaanxi Province of China (2021JQ-701)Xi’an Science and Technology Plan Project (2020KJRC0109)。
文摘Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm.
文摘线性判别分析(Linear discriminant analysis,LDA)作为一种有监督的降维方法,已经广泛应用于各个领域。然而,传统的LDA存在以下缺点:1)LDA假设数据是高斯分布和单一模态的;2)LDA对异常值和噪声十分敏感;3)LDA的判别投影方向对特征的可解释性低且对降维数较为敏感。为克服以上问题,提出了基于信息熵的鲁棒稀疏子类判别分析(Robust sparse subclass discriminant analysis based on information entropy,RSSDAIE)新方法。具体而言,对每个类别划分不同数量的子类后,重新定义类内散射矩阵和类间散射矩阵,使其更适应现实数据。另外,引入L_(21)范数、稀疏矩阵和正交重构矩阵以确保RSSDAIE具有更高的鲁棒性、更好的可解释性和更低的维度敏感性。同时采用交替方向乘子法对目标函数求解,避免类内散射矩阵不可逆的情形。在多个数据集上进行了对比实验,证明了RSSDAIE在数据适用类型、降低噪声影响、减少降维数影响等方面更有优越性,分类准确率更高。