In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlat...In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlation is considered to improve estimation efficiency. We suppose a semi-parametric structure for the covariances of observation errors in each subject and employ both the first order and the second order moment conditions of the observation errors to construct the estimating equations. Although there are nonparametric variable in distribution after estimators, the empirical log-likelihood ratio statistic still tends to a standard Xp2 the nuisance parameters are profiled away. A data simulation is also conducted.展开更多
When longitudinal data contains outliers, the classical least-squares approach is known to be not robust. To solve this issue, the exponential squared loss (ESL) function with a tuning parameter has been investigated ...When longitudinal data contains outliers, the classical least-squares approach is known to be not robust. To solve this issue, the exponential squared loss (ESL) function with a tuning parameter has been investigated for longitudinal data. However, to our knowledge, there is no paper to investigate the robust estimation procedure against outliers within the framework of mean-covariance regression analysis for longitudinal data using the ESL function. In this paper, we propose a robust estimation approach for the model parameters of the mean and generalized autoregressive parameters with longitudinal data based on the ESL function. The proposed estimators can be shown to be asymptotically normal under certain conditions. Moreover, we develop an iteratively reweighted least squares (IRLS) algorithm to calculate the parameter estimates, and the balance between the robustness and efficiency can be achieved by choosing appropriate data adaptive tuning parameters. Simulation studies and real data analysis are carried out to illustrate the finite sample performance of the proposed approach.展开更多
基金Supported by NBRP (973 Program 2007CB814901) of ChinaNNSF project (10771123) of China+1 种基金RFDP(20070422034) of ChinaNSF projects (ZR2010AZ001) of Shandong Province of China
文摘In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlation is considered to improve estimation efficiency. We suppose a semi-parametric structure for the covariances of observation errors in each subject and employ both the first order and the second order moment conditions of the observation errors to construct the estimating equations. Although there are nonparametric variable in distribution after estimators, the empirical log-likelihood ratio statistic still tends to a standard Xp2 the nuisance parameters are profiled away. A data simulation is also conducted.
文摘When longitudinal data contains outliers, the classical least-squares approach is known to be not robust. To solve this issue, the exponential squared loss (ESL) function with a tuning parameter has been investigated for longitudinal data. However, to our knowledge, there is no paper to investigate the robust estimation procedure against outliers within the framework of mean-covariance regression analysis for longitudinal data using the ESL function. In this paper, we propose a robust estimation approach for the model parameters of the mean and generalized autoregressive parameters with longitudinal data based on the ESL function. The proposed estimators can be shown to be asymptotically normal under certain conditions. Moreover, we develop an iteratively reweighted least squares (IRLS) algorithm to calculate the parameter estimates, and the balance between the robustness and efficiency can be achieved by choosing appropriate data adaptive tuning parameters. Simulation studies and real data analysis are carried out to illustrate the finite sample performance of the proposed approach.