针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum P...针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。展开更多
鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究...鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.展开更多
基于传统狼群算法(wolf pack algorithm,WPA)的基本思想提出了双向狼群算法(towards two directions wolf pack algorithm,T2WPA)。针对原算法对已知优良信息利用率的不足,T2WPA对猛狼奔袭过程进行改进:引入双向奔袭的概念,并给出新老...基于传统狼群算法(wolf pack algorithm,WPA)的基本思想提出了双向狼群算法(towards two directions wolf pack algorithm,T2WPA)。针对原算法对已知优良信息利用率的不足,T2WPA对猛狼奔袭过程进行改进:引入双向奔袭的概念,并给出新老头狼产生规则和猛狼位置更新机制。基于以上改进思想,分别按照与文献[9]和文献[10]相同的参数,选取文献中对应的基准函数来测试T2WPA的性能,最后将测试结果与文献进行对比。仿真结果表明,T2WPA具有良好的全局搜索能力和计算精度。展开更多
文摘针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。
文摘鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.
文摘基于传统狼群算法(wolf pack algorithm,WPA)的基本思想提出了双向狼群算法(towards two directions wolf pack algorithm,T2WPA)。针对原算法对已知优良信息利用率的不足,T2WPA对猛狼奔袭过程进行改进:引入双向奔袭的概念,并给出新老头狼产生规则和猛狼位置更新机制。基于以上改进思想,分别按照与文献[9]和文献[10]相同的参数,选取文献中对应的基准函数来测试T2WPA的性能,最后将测试结果与文献进行对比。仿真结果表明,T2WPA具有良好的全局搜索能力和计算精度。