A mathematical model was built for simulating an innovative design system combined solar energy with biogas boiler for floor radiant heating and fuel. Effects of the ambient air temperature on the performance of the s...A mathematical model was built for simulating an innovative design system combined solar energy with biogas boiler for floor radiant heating and fuel. Effects of the ambient air temperature on the performance of the system had been examined. And the results also support theoretical feasibility of the system.展开更多
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil...To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.展开更多
The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the stu...The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas.展开更多
In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the ...In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.展开更多
As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we asse...As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density.展开更多
For a mechanically ventilated space,the nominal age of the air can be obtained by the reciprocal of the air change rate.However,values of the local mean age of the air in practice may differ to some extent from the no...For a mechanically ventilated space,the nominal age of the air can be obtained by the reciprocal of the air change rate.However,values of the local mean age of the air in practice may differ to some extent from the nominal one since the nominal time constant employs as reference the theoretical optimum model.This discrepancy could become more prominent in spaces conditioning with both ventilation and heating system where the indoor air pattern is affected by turbulent mixed convection flow.Given importance of knowledge on the distribution of age of the air in these spaces,the present study provides insights on how ventilation design in floor heating systems can optimise the delivery of fresh air into the breathing zone.In this context,by establishing a computational fluid dynamic(CFD)model validated against experimental data,the local mean age of the air as well as the indoor air quality(IAQ)indices in the breathing zone of the floor heating system are examined under different ventilation modes.Six different ventilation scenarios are regarded in order to find the optimal ventilation design in terms of the delivery of the fresh air and ventilation effectiveness in occupied space.Furthermore,the integrated effects of the floor temperature and inlet supply temperature along with the ventilation design on the distribution of local age of the air are addressed.The obtained results indicate that the up-supply ventilation strategy is more efficient than down-supply one in the ventilation effectiveness and delivery of fresh air into the breathing zone.Moreover,it is shown that the mean age of the air in the breathing zone of the up-supply ventilation increases with increment of the Ri(Richardson number),whereas an increase in Ri improves the delivery of fresh air in down-supply mode.For a given floor temperature,the similar trend is also observed in the variation of age of the air with the characteristic temperature of supply inlet,namely the temperature difference between inlet supply and surrounding walls.展开更多
A floor heating system is a traditionary famous in Asian countries, especially in North East of China and Korea. In this report, we intended to clarify the effect of floor hating system for accessing a peripheral leuk...A floor heating system is a traditionary famous in Asian countries, especially in North East of China and Korea. In this report, we intended to clarify the effect of floor hating system for accessing a peripheral leukocyte regulation in winter season by evidence-based manner more than VAS. We set up two different office rooms heat-controlled by floor heating and air-conditioned by ceiling electric heater. Both qualitative and quantitative approaches determine which are better therapeutic effective recipes for this trial. The elements were evaluated by the total number of peripheral leukocyte, granulocyte and lymphocyte ratio and lymphocyte subsets. For 5 days of working in each conditioned room, the volunteers were changed the room after one-week interval for cooling down. Floor heating system regulated total number of peripheral leukocyte. The mode of the action for the high number of the volunteer was down-regulated. On the contrary, in lower numbers it was up-regulated after the trial. The number of leukocyte subsets, granulocyte and lymphocyte were also regulated by dose dependent manner. Emotional hormone, adrenalin, cortisone and nor-adrenaline were down regulated by floor heating but dopamine was up-regulated by this heating system. The reversal results were obtained by the group who worked in the conditioned room by the system heating from ceiling.展开更多
With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger cond...With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger condenser can be developed for the water heating, floors heating etc. After an encouraging theoretical study, two prototypes were produced in order to validate the theoretical results. A first refrigerator was coupled with a water-heater and another with a heating floor. The water temperature reached, in one day, is of 60℃;which makes it possible to predict better results with a continuously used refrigerator. In the same way for the heating floor coupled with the second refrigerator, the temperature reached high values because the surface is reduced;however for the heating floors the standard fixes the temperature between 28℃ and 30℃.展开更多
In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performan...In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performance of radiant floor will be strongly affected.However,in many current calculation models,solar radiation on the floor surface is assumed to be uniformly distributed,resulting in the inaccurate evaluation of the thermal performance of the radiant floor.In this paper,a calculation model based on the theory of discretization and the RC thermal network is proposed to calculate the dynamic thermal performance of radiant floor with the consideration of unevenly distributed solar radiation.Then,the discretization model is experimentally validated and is used to simulate a radiant floor heating system of an office room in Lhasa.It is found that with the unevenly distributed solar radiation,the maximum surface temperature near the south exterior window can reach up to 35.6℃,which exceeds the comfort temperature limit and is nearly 8.5℃higher than that in the north zone.Meanwhile,the heating capacity of the radiant floor in the irradiated zone can reach up to 171 W/m^(2),while that in the shaded zone is only 79 W/m^(2).The model with the assumption of uniformly distributed solar radiation ignores the differences between the south and north zones and fails to describe local overheating in the irradiated zones.By contrast,the discretization model can more accurately evaluate the thermal performance of radiant floor with the influence of real solar radiation.Based on this discretization model,novel design and control schemes of radiant floor heating system can be proposed to alleviate local overheating and reduce heating capacity in the irradiated zone.展开更多
Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conduct...Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conducted in the paper. The two carbon fibers were heat treated to improve cell performance (CF-R-H & CF-P-H), and were used to build a new BMFCs structure with a foamy carbon anode. The maximum power density was 112.4mWm-2 for CF-R-H, followed by 66.6mWm-2 for CF-R, 49.7 mWm-2 for CF-P-H and 21.6mWm-2 for CF-P respectively. The higher specific area and deep groove make CF-R have a better power output than with CF-P. Meanwhile, heat treatment of carbon fiber can improve cell power, nearly two-fold higher than heat treatment of plain fiber. This improvement may be due to the quinones group formation to accelerate the reduction of oxygen and electron transfer on the fiber surface in the three phase boundary after heat treatment. Compared to PAN-based carbon fiber, Rayon-based carbon fiber would be preferentially selected as cathode in novel BMFCs design due to its high surface area, low cost and higher power. The comparison research is significant for cathode material selection and cell design.展开更多
Based on the background of navigation lock structure engineering in Changsha Integrated Hub, this study used Parametric Design Language (APDL) compilation command on the t'mite element program ANSAYS platforms to s...Based on the background of navigation lock structure engineering in Changsha Integrated Hub, this study used Parametric Design Language (APDL) compilation command on the t'mite element program ANSAYS platforms to simulate the temperature field of the layered pouring process about the lower lock head. The temperature contour map and the change laws of temperature field with time in each different levels of the floor were obtained. And compared with the actual instrument measurement data, the feasibility of the simulation analysis was concluded. Then, this study optimized the pouring process, obtained the suitable methods of layered pouring and put forward the measures to reduce the concrete temperature crack.展开更多
A study was conducted in central Ethiopian highland in 2008 to investigate the consumption of house construction wood, the tree species preference for construction wood and the forthcoming conditions of this forest pr...A study was conducted in central Ethiopian highland in 2008 to investigate the consumption of house construction wood, the tree species preference for construction wood and the forthcoming conditions of this forest product and possible strategies for future availability. Twenty-four iron-roofed houses and twenty-eight thatch-roofed houses belonging to thirty-six farm households were investigated for types, volumes and sources of construction wood used. It was found that an average farmhouse with a floor space of 57 m^2 consumed about 13.7 m^3 of wood. Both floor space and wood consumptions vary with house types An average iron-roofed house with floor space of 51.9 m^2 consumed 16.8 m^3 of wood and an average thatch-roofed house with mean floor space of 28.6 m^2 consumed 3.2 m^3 of wood. Family size and floor space were the major factors influencing construction wood consumption. An average living house was composed of woods of 39.3% ,luniperus procera, 5.6% Cupressus lusitanica, 29.2% Eucalyptus globulus and 26% Eucalyptus camaldulensis. The wood volume from the first two species and half that of the third species were obtained from state forest which is currently banned from any construction wood extraction and hence there is a shortage of around 59.5% of woods. We suggest the promotion of various tree planting approaches to increase the wood supply and the use of alternative local materials like soil bricks for house construction.展开更多
Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Bas...Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.展开更多
文摘A mathematical model was built for simulating an innovative design system combined solar energy with biogas boiler for floor radiant heating and fuel. Effects of the ambient air temperature on the performance of the system had been examined. And the results also support theoretical feasibility of the system.
文摘To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.
基金Supported by Key Scientific Research Projects of Sichuan Provincial Department of Technology (2010JY0165)Key Special Scientific Research Projects of Mianyang City of Sichuan Province (09Y003-13)Key Scientific Research Projects of Sichuan Provincial Department of Education (2003A112)
文摘The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas.
基金The National Science and Technology Pillar Program during the 12th Five-Year Plan Period(No.2011BAJ03B14)the National Natural Science Foundation of China(No.51376044)
文摘In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.
基金supported by the Science and Technology Support Project for the Twelfth Five-year Grant in China(Grant No.2015BAD14B05)
文摘As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density.
文摘For a mechanically ventilated space,the nominal age of the air can be obtained by the reciprocal of the air change rate.However,values of the local mean age of the air in practice may differ to some extent from the nominal one since the nominal time constant employs as reference the theoretical optimum model.This discrepancy could become more prominent in spaces conditioning with both ventilation and heating system where the indoor air pattern is affected by turbulent mixed convection flow.Given importance of knowledge on the distribution of age of the air in these spaces,the present study provides insights on how ventilation design in floor heating systems can optimise the delivery of fresh air into the breathing zone.In this context,by establishing a computational fluid dynamic(CFD)model validated against experimental data,the local mean age of the air as well as the indoor air quality(IAQ)indices in the breathing zone of the floor heating system are examined under different ventilation modes.Six different ventilation scenarios are regarded in order to find the optimal ventilation design in terms of the delivery of the fresh air and ventilation effectiveness in occupied space.Furthermore,the integrated effects of the floor temperature and inlet supply temperature along with the ventilation design on the distribution of local age of the air are addressed.The obtained results indicate that the up-supply ventilation strategy is more efficient than down-supply one in the ventilation effectiveness and delivery of fresh air into the breathing zone.Moreover,it is shown that the mean age of the air in the breathing zone of the up-supply ventilation increases with increment of the Ri(Richardson number),whereas an increase in Ri improves the delivery of fresh air in down-supply mode.For a given floor temperature,the similar trend is also observed in the variation of age of the air with the characteristic temperature of supply inlet,namely the temperature difference between inlet supply and surrounding walls.
文摘A floor heating system is a traditionary famous in Asian countries, especially in North East of China and Korea. In this report, we intended to clarify the effect of floor hating system for accessing a peripheral leukocyte regulation in winter season by evidence-based manner more than VAS. We set up two different office rooms heat-controlled by floor heating and air-conditioned by ceiling electric heater. Both qualitative and quantitative approaches determine which are better therapeutic effective recipes for this trial. The elements were evaluated by the total number of peripheral leukocyte, granulocyte and lymphocyte ratio and lymphocyte subsets. For 5 days of working in each conditioned room, the volunteers were changed the room after one-week interval for cooling down. Floor heating system regulated total number of peripheral leukocyte. The mode of the action for the high number of the volunteer was down-regulated. On the contrary, in lower numbers it was up-regulated after the trial. The number of leukocyte subsets, granulocyte and lymphocyte were also regulated by dose dependent manner. Emotional hormone, adrenalin, cortisone and nor-adrenaline were down regulated by floor heating but dopamine was up-regulated by this heating system. The reversal results were obtained by the group who worked in the conditioned room by the system heating from ceiling.
文摘With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger condenser can be developed for the water heating, floors heating etc. After an encouraging theoretical study, two prototypes were produced in order to validate the theoretical results. A first refrigerator was coupled with a water-heater and another with a heating floor. The water temperature reached, in one day, is of 60℃;which makes it possible to predict better results with a continuously used refrigerator. In the same way for the heating floor coupled with the second refrigerator, the temperature reached high values because the surface is reduced;however for the heating floors the standard fixes the temperature between 28℃ and 30℃.
基金This research work was financially supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1944)the National Natural Science Foundation of China(No.51708453).
文摘In the building with many transparent envelopes,solar radiation can irradiate on the local surface of floor and cause overheating.The local thermal comfort in the room will be dissatisfactory and the thermal performance of radiant floor will be strongly affected.However,in many current calculation models,solar radiation on the floor surface is assumed to be uniformly distributed,resulting in the inaccurate evaluation of the thermal performance of the radiant floor.In this paper,a calculation model based on the theory of discretization and the RC thermal network is proposed to calculate the dynamic thermal performance of radiant floor with the consideration of unevenly distributed solar radiation.Then,the discretization model is experimentally validated and is used to simulate a radiant floor heating system of an office room in Lhasa.It is found that with the unevenly distributed solar radiation,the maximum surface temperature near the south exterior window can reach up to 35.6℃,which exceeds the comfort temperature limit and is nearly 8.5℃higher than that in the north zone.Meanwhile,the heating capacity of the radiant floor in the irradiated zone can reach up to 171 W/m^(2),while that in the shaded zone is only 79 W/m^(2).The model with the assumption of uniformly distributed solar radiation ignores the differences between the south and north zones and fails to describe local overheating in the irradiated zones.By contrast,the discretization model can more accurately evaluate the thermal performance of radiant floor with the influence of real solar radiation.Based on this discretization model,novel design and control schemes of radiant floor heating system can be proposed to alleviate local overheating and reduce heating capacity in the irradiated zone.
基金support by the Key Project of Nature Science Fund of Shandong Province, China (ZR2011B Z008)the Special Fund of Marine Renewable Energy from China’s State Oceanic Administration (GHME 2011GD04)
文摘Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conducted in the paper. The two carbon fibers were heat treated to improve cell performance (CF-R-H & CF-P-H), and were used to build a new BMFCs structure with a foamy carbon anode. The maximum power density was 112.4mWm-2 for CF-R-H, followed by 66.6mWm-2 for CF-R, 49.7 mWm-2 for CF-P-H and 21.6mWm-2 for CF-P respectively. The higher specific area and deep groove make CF-R have a better power output than with CF-P. Meanwhile, heat treatment of carbon fiber can improve cell power, nearly two-fold higher than heat treatment of plain fiber. This improvement may be due to the quinones group formation to accelerate the reduction of oxygen and electron transfer on the fiber surface in the three phase boundary after heat treatment. Compared to PAN-based carbon fiber, Rayon-based carbon fiber would be preferentially selected as cathode in novel BMFCs design due to its high surface area, low cost and higher power. The comparison research is significant for cathode material selection and cell design.
文摘Based on the background of navigation lock structure engineering in Changsha Integrated Hub, this study used Parametric Design Language (APDL) compilation command on the t'mite element program ANSAYS platforms to simulate the temperature field of the layered pouring process about the lower lock head. The temperature contour map and the change laws of temperature field with time in each different levels of the floor were obtained. And compared with the actual instrument measurement data, the feasibility of the simulation analysis was concluded. Then, this study optimized the pouring process, obtained the suitable methods of layered pouring and put forward the measures to reduce the concrete temperature crack.
基金the Austrian Exchange Service for financially supporting this study as part of the academic thesis of the first author
文摘A study was conducted in central Ethiopian highland in 2008 to investigate the consumption of house construction wood, the tree species preference for construction wood and the forthcoming conditions of this forest product and possible strategies for future availability. Twenty-four iron-roofed houses and twenty-eight thatch-roofed houses belonging to thirty-six farm households were investigated for types, volumes and sources of construction wood used. It was found that an average farmhouse with a floor space of 57 m^2 consumed about 13.7 m^3 of wood. Both floor space and wood consumptions vary with house types An average iron-roofed house with floor space of 51.9 m^2 consumed 16.8 m^3 of wood and an average thatch-roofed house with mean floor space of 28.6 m^2 consumed 3.2 m^3 of wood. Family size and floor space were the major factors influencing construction wood consumption. An average living house was composed of woods of 39.3% ,luniperus procera, 5.6% Cupressus lusitanica, 29.2% Eucalyptus globulus and 26% Eucalyptus camaldulensis. The wood volume from the first two species and half that of the third species were obtained from state forest which is currently banned from any construction wood extraction and hence there is a shortage of around 59.5% of woods. We suggest the promotion of various tree planting approaches to increase the wood supply and the use of alternative local materials like soil bricks for house construction.
基金Project(10YZ156) supported by Innovation Program of Shanghai Municipal Education Commission, China Project(sdl09009) supported by Training Program for Outstanding Youth Teacher of Shanghai Municipal Education Commission, China Project(Z2010-103) supported by Shanghai Education Development Foundation, China
文摘Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.