期刊文献+
共找到1,085篇文章
< 1 2 55 >
每页显示 20 50 100
Novel wood-plastic composite fabricated via modified steel slag:Preparation,mechanical and flammability properties
1
作者 Ling Zhao Kai Zhao +4 位作者 Zhenwei Shen Yifan Wang Xiaojie Xia Hao Zhang Hongming Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2110-2120,共11页
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare... A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors. 展开更多
关键词 modified steel slag woodplastic composites preparation method mechanical property flame retardant
下载PDF
Physicomechanical Properties of Sustainable Wood Plastic Composites of Tropical Sawdust and Thermoplastic Waste for Possible Utilization in the Wood Industry
2
作者 Jude I. Duruaku Patrick A. C. Okoye +3 位作者 Theresa U. Onuegbu Valentine I. Onwukeme Nkechi H. Okoye Joseph O. Nwadiogbu 《Journal of Sustainable Bioenergy Systems》 2023年第4期149-171,共23页
This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected... This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected tropical timbers, namely, Nauclea diderrichii, Brachystegia eurycoma, Erythrophleum suaveolens and Prosopis africana, for possible utilization in the wood industry. The compounding of the polymer blends of the precursor plastics, namely recycled PET (rPET) and recycled PE (rPE) with the sawdust (SD) from the selected timbers to produce the desired wood rPET/rPE composites was carried out via the flat press method. The characterization of the physicomechanical properties of the wood plastic composites (WPCs) produced, such as the density, hardness, flexural strength, ultimate tensile strength, elongation %, thickness swelling and water absorption capacity was carried out using methods based mainly on the European Committee for Standardization (CEN) and the American Society for Testing Materials (ASTM) standards. The results of the investigation on the resultant composites indicated that changes in the SD content affected the density of flat-pressed WPCs in line with literature. Generally, it was observed that as wood dust increased and PET content decreased, the density of composites decreased with some deviations as expected probably due to the anisotropic nature of the wood fillers. The analysis of variance (ANOVA) revealed that there was a statistically significant variation in the wood composites of Nuclea diderichii based on the physicomechanical values as the p-value (0.020) obtained was less than the critical level of α = 0.05. It was also observed that the composite, Wood 1 Sample 5 (W<sub>1</sub>S<sub>5</sub>) which was composed of 40% rPE, 40% rPET and 20% SD (derived from Nuclea diderichii), had the highest percentage elongation (26.84%);the highest flexural strength (14.995 N/mm<sup>2</sup>) and possibly the least carbon footprint in the environment. These properties of W<sub>1</sub>S<sub>5</sub> suggest that it could therefore be the best option for the production of building materials like ceiling boards or floor skirting in the wood plastic composite industry. The results of these investigations have therefore indicated that the fabrication of WPCs from sawdust and rPET/rPE was technically feasible and had prospects for large scale production in the wood industry. 展开更多
关键词 wood plastic composites Density Water Absorption Capacity CELLULOSE Sustainability RECYCLE Waste
下载PDF
Effects of two modification methods on the mechanical properties of wood flour/recycled plastic blends composites: addition of thermoplastic elastomer SEBS-g-MAH and in-situ grafting MAH 被引量:1
3
作者 宋永明 王清文 +2 位作者 韩广平 王海刚 高华 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期373-378,399,400,共8页
The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com... The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA). 展开更多
关键词 COMPATIBILIZER composites in-situ grafting recycled plastic blends wood flour
下载PDF
Production of mahogany sawdust reinforced LDPE wood–plastic composites using statistical response surface methodology 被引量:1
4
作者 Sofina-E-Arab Md.Azharul Islam 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期487-494,共8页
We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of compo... We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively. 展开更多
关键词 wood plastic composite LDPE Mechanical properties Physical properties Response surface methodology
下载PDF
Filling Behavior of Wood Plastic Composites 被引量:1
5
作者 lvica Duretek Thomas Lucyshyn Clemens Holzer 《Journal of Civil Engineering and Architecture》 2016年第11期1236-1243,共8页
WPC (wood plastic composites) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of... WPC (wood plastic composites) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth's resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays, there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection molding processes. This work presents the results of numerical simulation and experimental visualization of the mold filling process in injection molding of WPC. The 3D injection molding simulations were done with the commercial software package Autodesk~ Moldflow Insight 2016 (AMI). The mold filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers, the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the molded part, especially at high filler content. 展开更多
关键词 wood plastic composites injection molding SIMULATION PROCESS mold.
下载PDF
Preliminary study of the effects of EVA coupling agents on properties of wood-plastic composites 被引量:2
6
作者 LI Dong-fang LI Li LI Jian-zhang 《Forestry Studies in China》 CAS 2010年第2期90-94,共5页
As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigate... As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases. 展开更多
关键词 wood-plastic composites ethylene-vinyl-acetate coupling agent PROPERTY
下载PDF
Mechanical properties of wood flour/recycled-thermoplastic-blends composites
7
作者 SONG Yong-ming WANG Qing-wen(Key laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University) 《北京林业大学学报》 CAS CSCD 北大核心 2006年第S2期180-180,共1页
The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virg... The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood. 展开更多
关键词 wood FLOUR composites COMPATIBILIZER thermoplastic blends recycled plastics
下载PDF
A Simulation Software for the Prediction of Thermal and Mechanical Properties of Wood Plastic Composites
8
作者 Ritu Gupta Norrozila Binti Sulaiman +1 位作者 Arun Gupta M.D.H. Beg 《Computer Technology and Application》 2013年第1期1-5,共5页
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu... Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation. 展开更多
关键词 wood plastic composite simulation software heat transfer mechanical properties.
下载PDF
Chemical characterization of smoke from the production process of wood-plastic composites
9
作者 Wang Shi-fa Zhang Ai-jun 《Forestry Studies in China》 CAS 2007年第1期57-62,共6页
The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, w... The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified. 展开更多
关键词 wood-plastic composite unpleasant smell pyrogenation Manchurian ash sawdust polypropylene powder
下载PDF
Preliminary study of viscoelastic properties of MAPP-modified wood flour/polypropylene composites 被引量:4
10
作者 CAO Jin-zhen WANG Yi XU Wei-yue WANG Lei 《Forestry Studies in China》 CAS 2010年第2期85-89,共5页
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA).... Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects. 展开更多
关键词 wood flour/polypropylene composite (wpc maleated polypropylene (MAPP) viscoelastic properties stress relaxa-tion dynamic mechanical analysis (DMA)
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
11
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 wood-plastic composites Flax fiber REINFORCEMENT PROCESSING Mechanical property Creep resistance
下载PDF
Mechanical Properties and Fire Retardancy of Wood Flour/High-Density Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO_(2)Network and Fire Retardant
12
作者 Haiyang Zhou Xiaoyu Wang +2 位作者 Xiaolong Hao Qingwen Wang Rongxian Ou 《Journal of Renewable Materials》 SCIE EI 2020年第5期485-498,共14页
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne... The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles. 展开更多
关键词 wood plastic composites nano-SiO_(2) mechanical properties CREEP fire retardancy
下载PDF
Abiotic Degradation of Recycled Polymer/Wood Composites Exposed to Outdoor Applications
13
作者 Andre Luis Catto Scheyla Hermann de Almeida Ruth Marlene Campomanes Santana 《材料科学与工程(中英文A版)》 2014年第11期321-329,共9页
关键词 木塑复合材料 非生物降解 应用 聚合物 自然风化 室外 再生 机械性能
下载PDF
Study on Water Resistance of Polydopamine Treatment Wood Flour/Polypropylene Composites
14
作者 Do Khoa Thi Lanh Tran Duc Thien 《Journal of Materials Science and Chemical Engineering》 2016年第5期7-15,共9页
This paper aims to investigate the water absorption of wood flour/polypropylene composites and its effects on dimensional stability and crystallization properties. Wood-plastic composites (WPCs) makes using polydopami... This paper aims to investigate the water absorption of wood flour/polypropylene composites and its effects on dimensional stability and crystallization properties. Wood-plastic composites (WPCs) makes using polydopamine modified wood flour (WF-D), virgin polypropylene, maleic anhydride-grafted polypropylene (MA) and antioxidant, by using hot-pressing moulding. Water absorption (WA), thickness swelling (TS) and failure of flexural properties of the composites have studied for a range of immersion times. It is found that the WA and TS have increased with WF content and immersion time. The water absorption and thickness swelling of WPCs are 0.85% and 0.99%, respectively, after 8 days immersion. With the prolonging of immersion time, the impact strength, flexural strength and flexural modulus of WPCs increase first and then decrease. The impact strength decreases from 3.32 kJ/m<sup>2</sup> to 2.94 kJ/m<sup>2</sup>, the retention rate is 88.55%;the flexural strength and flexural modulus by 68.58 Mpa and 3.92 Gpa, respectively. WPCs crystallization and thermal properties decrease slightly. Microstructures of the composites are examined to understand the mechanisms for the wood-plastic interaction which affects the water absorption and thickness swelling. Our work demonstrates that using polydopamine treatment wood flour for preparing WPCs can be an efficient way to improve the water resistance of WPCs. 展开更多
关键词 wood Flour Water Absorption POLYPROPYLENE wood-plastic composites POLYDOPAMINE Thickness Swelling
下载PDF
Impacts of freezing and thermal treatments on dimensional and mechanical properties of wood flour-HDPE composite 被引量:1
15
作者 YANG Wei-jun XIE Yan-jun +2 位作者 WANG Hai-gang LIU Bao-yu WANG Qing-wen 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期143-147,共5页
Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatur... Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatures to evaluate the effects of freezing and thermal treatment on its dimensional and mechanical properties. At elevated temperatures, WPC expanded rapidly initially, and then contracted slowly until reaching an equilibrium state. Treatment at 52°C and relative humidity of 50% for 16 days improved the mechanical properties of WPC: flexure, tensile strength, and izod unnotched impact strength increased by 8%, 10% and 15%, respectively. Wide-angle X-ray diffraction (XRD) tests showed that the degree of crystalization of HDPE in WPC declined with increasing treatment temperature. 展开更多
关键词 wood plastic composite freezing treatment thermal treatment DIMENSION mechanical properties X-ray diffraction
下载PDF
The Accelerated Thermo-Oxidative Aging Characteristics of Wood Fiber/Polycaprolactone Composite:Effect of Temperature,Humidity and Time 被引量:1
16
作者 Shuang Si Qian Tang Xingong Li 《Journal of Renewable Materials》 SCIE EI 2021年第12期2209-2222,共14页
This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on... This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on their mechanical,chemical and morphology properties were evaluated.The composite was prepared from melted wood fibers and modified polycaprolactone by a molding process.A temperature and humidity controllable test chamber was used for the thermo-oxidative aging of the composite.The thermo-oxidative aging caused surface of the composite to be much more rougher and even a few cracks and holes appeared on it.According to the spectra of Fourier Transform Infrared(FTIR)and Gel Permeation Chromatography(GPC),C=O in the molecular chain of polycaprolactone was hydrolyzed and C–O was broken after the aging treatment,which resulted in a reduction in average molecular weight of the composite.Moreover,results showed that the mechanical strength decreased a lot with the increase in time,temperature and humidity,and the effect of temperature and humidity was more significant compared with that of time.Controlling the temperature and humidity during thermo-oxidative aging treatment could accelerate the aging of composite,which provided a quick and effective method for evaluating the aging resistance of the composite. 展开更多
关键词 wood fiber POLYCAPROLACTONE wood plastic composite thermo-oxidative aging
下载PDF
Influence of Coupling Agent in Polyolefinic Composites from Post-Consumer Waste with Eucalyptus Grandis Flour
17
作者 Andre Luis Catto Ruth Marlene Campomanes Santana 《材料科学与工程(中英文B版)》 2013年第10期641-652,共12页
关键词 木塑复合材料 聚烯烃类 偶联剂 巨桉 高密度聚乙烯 聚合物基体 面粉 废料
下载PDF
MMT对WPC吸水前后拉伸及弯曲性能的影响
18
作者 李湘 方松刚 《塑料》 CAS CSCD 北大核心 2023年第3期39-42,47,共5页
木粉经过NaOH溶液处理后,表面出现了孔洞结构,用处理后的木粉与PP废玩具塑料(X-PP)制备的木塑复合材料(WPC),其内部的木粉和X-PP的界面连接性与未处理的相比较好;在WPC中加入蒙脱土(MMT),复合材料的拉伸强度、弯曲强度和弯曲模量均升高... 木粉经过NaOH溶液处理后,表面出现了孔洞结构,用处理后的木粉与PP废玩具塑料(X-PP)制备的木塑复合材料(WPC),其内部的木粉和X-PP的界面连接性与未处理的相比较好;在WPC中加入蒙脱土(MMT),复合材料的拉伸强度、弯曲强度和弯曲模量均升高,断裂伸长率和吸水性降低,添加5%的MMT,复合材料的拉伸强度、弯曲强度和模量分别为19.3、29.1和2 410.1 MPa,与未添加的WPC相比,分别提高了12.2%、6.6%和7.6%;吸水后,WPC的拉伸强度、弯曲强度和弯曲模量从16.1、26.4和2 130.2 MPa分别下降至14.2、21.2和1 732.1 MPa,添加MMT可以有效降低WPC吸水后性能的下降率。当添加5%的MMT时,WPC吸水后的拉伸强度、弯曲强度和模量的下降率分别从9.8%、12.8%和13.4%下降至3.6%、5.2%和5.5%。 展开更多
关键词 木粉 PP废玩具塑料 木塑复合材料 蒙脱土 性能下降率
下载PDF
An Evaluation of the Physicochemical, Structural and Morphological Properties of Selected Tropical Wood Species for Possible Utilization in the Wood Industry
19
作者 Jude I. Duruaku Patrick A. C. Okoye +3 位作者 Nkechi H. Okoye Joseph O. Nwadiogbu Valentine I. Onwukeme Rosemary U. Arinze 《Journal of Sustainable Bioenergy Systems》 2023年第4期131-148,共18页
This work investigated and quantified the physicochemical, structural and morphological properties of four (4) tropical timbers as precursor raw materials for possible utilization in the wood plastic industry. The phy... This work investigated and quantified the physicochemical, structural and morphological properties of four (4) tropical timbers as precursor raw materials for possible utilization in the wood plastic industry. The physicochemical properties of the wood samples such as the bulk and tapped density, moisture content, water absorption capacity at 25°C, volatile content, fixed carbon, ash content, alpha cellulose, hemicellulose, lignin, and extractives contents were determined using standard methods like the European Committee for Standardization and (CEN/TS) and the American Society for Testing Materials (ASTM) standards. The structural and morphological properties of the samples were examined with Fourier Infrared Transform (FTIR) spectroscopy and scanning electron microscope (SEM). Results indicated that the bulk density values of the timbers ranged from 0.34 g/cm<sup>3</sup> in Brachystegia eurycoma (W<sub>3</sub>) to 0.47 g/cm<sup>3</sup> in Erythrophleum suaveolens (W<sub>2</sub>), with the other timbers, Nuclea diderichii (W<sub>1</sub>) and Prosopis africana (W<sub>4</sub>) having the same bulk density of 0.40 g/cm<sup>3</sup>. With respect to their moisture content, W<sub>2</sub> had the highest value (8.38%) while Nauclea diderrichii had the lowest value (6.52%). The water absorption capacities of the woods studied correlated with the cellulose composition of wood in the order of: W<sub>3</sub> > W<sub>1</sub> > W<sub>4</sub> > W<sub>2</sub>. The FTIR results showed that W<sub>2</sub> and W<sub>3</sub> presented a slightly more prominent and broader band than the other woods at 1731 cm<sup>-1</sup>, in agreement with the higher holocellulose content of these species, while W<sub>2</sub> and W<sub>4</sub> presented the most prominent peaks indicating higher lignin content than W<sub>1</sub> and W<sub>3</sub>. The SEM micrographs of the wood flour samples investigated indicated that the surfaces of the woods were rough and heterogeneous with irregular crystal and brick shaped particles. A two-way analysis of variance (ANOVA) carried out with respect to the chemical composition of the wood samples indicated that there was no statistically significant variation in the wood chemical composition between species as the p-value (0.852) obtained was greater than the critical level of α = 0.05. 展开更多
关键词 wood plastic composites Density Water Absorption Capacity CELLULOSE Sustainability
下载PDF
木塑空心柱轴压力学性能试验与有限元分析
20
作者 高飞 李俞谕 +3 位作者 何文辉 郝笑龙 欧荣贤 王清文 《木材科学与技术》 北大核心 2024年第3期40-48,共9页
为探究木塑复合材料用作低密度装配式建筑承重柱的可行性,通过材性测试和轴压试验评估共挤出木塑空心柱的轴压力学性能,并利用ABAQUS有限元分析软件模拟探究木塑空心柱壁厚、长细比和内置薄壁圆钢管壁厚对其极限承载力、变形能力和破坏... 为探究木塑复合材料用作低密度装配式建筑承重柱的可行性,通过材性测试和轴压试验评估共挤出木塑空心柱的轴压力学性能,并利用ABAQUS有限元分析软件模拟探究木塑空心柱壁厚、长细比和内置薄壁圆钢管壁厚对其极限承载力、变形能力和破坏模式的影响。模拟分析结果与试验测试数据高度一致,验证了模拟方法的有效性。试验研究表明,木塑空心柱主要通过局部压溃破坏,并表现出明显的弹塑性阶段。有限元分析结果表明,增加壁厚能提高木塑空心柱的初始刚度和极限承载力,其中8 mm厚度在成本、重量及承载能力方面具有最佳性价比。随着长细比的增加,木塑空心柱的承载力和刚度逐渐降低,破坏模式也从强度破坏转向失稳破坏。内置3 mm薄壁钢管显著增强了木塑空心柱的承载力和延性,其力学性能能够满足建筑对抗压承重构件的要求。 展开更多
关键词 木塑空心柱 轴压力学性能 有限元分析 载荷-位移关系 极限承载力
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部