It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this top...It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this topic, especially based on theoretical approaches. We measured the longitudinal MOE of Chinese fir on microtomed sections ranging in thickness from 70 to 200 μm and compared these with the values of samples of normal size. The results indicate that the MOE of microtomed wood sections increases with thickness from 70 to 200 μm, but is significantly less than that of normal samples. A size effect coefficient of 2.63 is inferred based on statistical data for samples of normal size and 200 μm thick microtomed sections. Finally, an explanation based on a complete shear restraint model of cell walls and a single fiber multi-ply model is proposed for the size effect on stiffness of microtomed wood sections.展开更多
基金the National Natural Science Foundation of China (Grant No. 30730076 and 30400337) for financial support
文摘It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this topic, especially based on theoretical approaches. We measured the longitudinal MOE of Chinese fir on microtomed sections ranging in thickness from 70 to 200 μm and compared these with the values of samples of normal size. The results indicate that the MOE of microtomed wood sections increases with thickness from 70 to 200 μm, but is significantly less than that of normal samples. A size effect coefficient of 2.63 is inferred based on statistical data for samples of normal size and 200 μm thick microtomed sections. Finally, an explanation based on a complete shear restraint model of cell walls and a single fiber multi-ply model is proposed for the size effect on stiffness of microtomed wood sections.