This essay focuses on three main characters in Thomas Hardy's The woodlanders, and analyzes their psychological complex: John South--Tree Complex, Giles Winterborne--Inferiority Complex, and Marty South---Survival o...This essay focuses on three main characters in Thomas Hardy's The woodlanders, and analyzes their psychological complex: John South--Tree Complex, Giles Winterborne--Inferiority Complex, and Marty South---Survival of the Fittest, showing the relationship between man and nature.展开更多
There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free e...There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free evolution of natural dynamics by applying minimal or no management,is gaining attention.Natural dynamics is difficult to predict due to the influence of multiple interacting factors such as climatic and edaphic conditions,composition and abundance of species,and the successional character of these species.Here,we study the natural dynamics of a mixed forest located in central Spain,which maintained an open forest structure,due to intensive use,until grazing and cutting were banned in the 1960s.The most frequent woody species in this forest are Fagus sylvatica,Quercus petraea,Quercus pyrenaica,Ilex aquifolium,Sorbus aucuparia,Sorbus aria and Prunus avium,with contrasting shade and drought tolerance.These species are common in temperate European deciduous forest and are found here near their southern distribution limit,except for Q.pyrenaica.In order to analyze forest dynamics and composition,three inventories were carried out in 1994,2005 and 2015.Our results show that,despite the Mediterranean influence,the natural dynamics of this forest has been mainly determined by different levels of shade tolerance.After the abandonment of grazing and cutting,Q.pyrenaica expanded rapidly due to its lower shade tolerance,whereas after canopy closure and forest densification,shade-tolerant species gained ground,particularly F.sylvatica,despite its lower drought and late-frost tolerance.If the current dynamics continue,F.sylvatica will overtake the rest of the species,which will be relegated to sites with shallow soils and steep slopes.Simultaneously,all the multi-centennial beech trees,which are undergoing a rapid mortality and decline process,will disappear.展开更多
The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET p...The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.展开更多
Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and ant...Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and anthropogenic perturbations due to historical events(e.g.,agricultural development),thus contemporary plant functional composition may be explained by historical woodland change,a type of land cover change.We propose that historical woodland changes may have legacy effects on contemporary plant functional composition.Here,we used partial least squares regression and linear mixed model analyses to test this assumption by coupling data on community weighted means(CWM)and community weighted variance(CWV)of vegetation plots and calculating the time of woodland existence across different periods from AD 0 to 2017.We found that the legacy effects of historical land cover changes on CWM and CWV during the existence time of woodland,particularly from AD 0 to 900,were drivers of contemporary plant functional composition at large spatial scales.Furthermore,historical woodland changes can affect contemporary plant functional composition,depending on the biome type.Particularly,the CWM of plant height,seed mass,and seed length showed the strongest correlations with woodland changes from AD 1910 to 2010 in tropics with year-round rain,and the CWM of leaf traits correlated with woodland changes from AD 0 to 1700 in tropics with summer rain.Our study provides the effective evidence on the legacy of historical woodland changes and the effects on contemporary plant functional composition,which is crucial with respect to effective management of plant diversity and assessing ecosystem functions and services from local to global scales over time.展开更多
It has been reported that changes to miombo woodland ecosystems through conversion to other land uses alter tree species diversity and soil properties. The aim was to assess whether the Important Value Index (IVI), Sh...It has been reported that changes to miombo woodland ecosystems through conversion to other land uses alter tree species diversity and soil properties. The aim was to assess whether the Important Value Index (IVI), Shannon- Wiener diversity index (H'), and soil chemical properties differ between land uses in the Kibutuka miombo woodland ecosystem. IVI and H' were used to indicate tree species dominance and diversity. Statistical analyses were performed in R software. IVI of Brachystegia was significantly (p Combretum, Milletia, and Diplorhynchus had significantly (p p p p < 0.05) higher in intact forests than in the degraded forest. Degradation seen at a landscape scale for vegetation parameters, but not for soil parameters, indicates that the land use change taking place in the Kibutuka miombo woodland ecosystem is recent and the degradation seen in vegetation is still not reflected in the soil properties.展开更多
The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns...The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland.展开更多
The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in thi...The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.展开更多
The Woodlands,是Ian McHarg最有影响力的项目之一,是美国历史上第一座以生态学理论为主导的新城规划。以采用生态水文设计、原生植物保护、建立野生动物廊道等生态学方法而闻名。该城的建设在维持城市自然景观格局、保护生物栖息地及...The Woodlands,是Ian McHarg最有影响力的项目之一,是美国历史上第一座以生态学理论为主导的新城规划。以采用生态水文设计、原生植物保护、建立野生动物廊道等生态学方法而闻名。该城的建设在维持城市自然景观格局、保护生物栖息地及预防雨洪等方面堪称典范,对我国城市雨洪管理和风景园林设计具有借鉴价值。展开更多
This study in the dry tropical woodlands of SE Angola in Cuando-Cubango Province assessed the diversity and composition of woody species in fallows compared to those in mature woodlands. We assessed the population str...This study in the dry tropical woodlands of SE Angola in Cuando-Cubango Province assessed the diversity and composition of woody species in fallows compared to those in mature woodlands. We assessed the population structure of the most harvested woody species by calculating size class distribution and evaluated their regeneration potential based on the density of saplings. The vegetation was surveyed in 20 plots of 20 × 50 m(1000 m2). In each plot, we measured the diameter at breast height(DBH) of all woody species with DBH ≥ 5 cm. The saplings were counted, identified and recorded; 718 individuals, corresponding to 34 species in 32 genera and 15 families were recorded. The size class distribution of target woody species showed three different patterns in fallows and mature woodlands. In general,most of the smaller diameter classes had more individuals than the larger ones did, showing that the regeneration may take place. However, in some diameter classes, the absence of larger stems indicated selective logging of larger trees. Few saplings were recorded in the fallows or mature woodlands; fire frequency and intensity is probably the main obstacle for seed germination and seedling survival rates in the studied area.展开更多
We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia to determine plant community types and species distribution patterns and their relationships...We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia to determine plant community types and species distribution patterns and their relationships with environmental variables, including altitude, pH, cation exchange capacity, electrical conductivity (EC), and moisture. We used a selective approach with a systematic sampling design. A total of 74 quadrats, each 25m × 25m at intervals of 150-200 m were sampled along the established transect lines. For herbaceous vegetation and soil data collection, five subquadrats each lm x lm were established at the four corners and the center of each quadrat. Three community types were identified using TWINSPAN analysis. All three community types showed high diversity (Shannon-Weiner index), the highest in community type II at 3.55. The highest similarity coefficient was 0.49 (49%) between community types II and III, reflecting 0.51 (51%) dissimilarity in their species richness. The canonical correspondence ordination diagram revealed that the distribution pattern of community type I was explained by moisture while that of community types III and II was explained by EC and altitude and moisture, respectively. Altitude was the most statistically significant environmental variable, followed by moisture and EC in determining the total variation in species composition and distribution patterns while pH and cation exchange capacity were non significant. In conclusion, we recommend that any intervention should take into account these three discrete community types and their environmental settings to make the intervention more successful.展开更多
We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia Our objective was to describe plant species composition, diversity, re- generation status, a...We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia Our objective was to describe plant species composition, diversity, re- generation status, and population structure by a selective approach with a systematic sampling design. A total of 74 quadrats (each for 25 m x 25 m, spaced at intervals of 150--200 m) were sampled along established tran- sect lines following the homogeneity of the vegetation. Vegetation data including cover-abundance, height, diameter at breast height (DBH), and numbers of seedlings and saplings of woody species were analyzed using Excel spreadsheet, Shannon Weiner diversity index, and PAST version 1.62. A total of 87 vascular plant species of 74 genera and 36 families were recorded. The dominant family was Fabaceae represented by 16 (18.39 %) species of 13 genera. Shannon Weiner diversity and evenness were 3.67 and 0.82, respectively, which showed that the area was en- dowed with rich floral diversity evenly distributed. The vegetation structure, as quantified by cumulative diameter class frequency distribution, plotted as an interrupted inverted-J- shape pattern with a sharp decrease in the 2nd diameter class. This indicated poor vegetation structure. The diameter classes frequency distributions of selected species plotted in four general patterns i.e., interrupted Inverted-J-shape, J-shape, Bell-shape and Irregular-shape. In conclusion, although the area showed high floral diversity and evenness, woody species including Sterculea setigera, Boswellia papyrifera, and Pterocarpus lucens showed lowest recruitment of seedlings and saplings.展开更多
This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishpon...This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishponds, and the nitrogen flux in the riparian zone of Yuqiao Reservoir. The groundwater nitrate-N concentrations in cropland were the highest among the four land uses. Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p 〈 0.05) higher than in 5yr woodland. The lowest nitrogen concentrations were detected in fishponds. Nitrate-N was the main form in cropland and 2yr woodland, whereas both nitrate-N and dissolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds. But, ammonium-N was the main form in the ephemeral stream. During the rainy season, the groundwater flow with dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient. The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen. The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow. The fishpond was not an important pollution source for nitrogen transfer via shallow groundwater.展开更多
Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a...Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.展开更多
Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems.However,equations for dry deciduous woodland ecosystems,an important carbon sink in the lowland areas of E...Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems.However,equations for dry deciduous woodland ecosystems,an important carbon sink in the lowland areas of Ethiopia have not as yet been developed.This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass(AGB)of dominant woody species based on data from destructive sampling for Combretum collinum,Combretum molle,Combretum harotomannianum,Terminalia laxiflora and mixed-species.Diameter at breast height ranged from 5 to 30 cm.Two empirical equations were developed using DBH(Eq.1)and height(Eq.2).Equation 2 gave better AGB estimations than Eq.1.The inclusion of both DBH and H were the best estimate biometric variables for AGB.Further,the equations were evaluated and compared with common generic allometric equations.The result showed that our allometric equations are appropriate for estimating AGB.The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems.展开更多
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commo...The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.展开更多
Main influencing factors affecting the ecology benefit value of woodland are analyzed,mainly including the water conservation value,environment cleaning value,water and soil conservation value,and climate regulation v...Main influencing factors affecting the ecology benefit value of woodland are analyzed,mainly including the water conservation value,environment cleaning value,water and soil conservation value,and climate regulation value.Evaluation model of the ecology benefit value of woodland is put forward which can deal with the uncertain information.Method for determining index weights is discussed,as well as the processing method for uncertain information during the evaluation of ecology benefit value of woodland.Finally,the feasibility and convenience of the evaluation model of the woodland ecology benefit value are illustrated with examples.展开更多
The aim of the study was to assess the impact of E. camaldulensis plantation established in a semi-arid area on native woody plants diversity and density. Nested quadrant plot design, having an area of 15 m × 15 ...The aim of the study was to assess the impact of E. camaldulensis plantation established in a semi-arid area on native woody plants diversity and density. Nested quadrant plot design, having an area of 15 m × 15 m used to collect data. Totally, 37 species at the plantation and 30 species at the native woodland, belonging to 24 families, identified. Species diversity (H′) was 1.57 at the plantation and 2.09 at the woodland forest. As for density of understory woody plants (height ≥ 1 m) the plantation forest harbored 6, 604 stems/ha while the native woodland had 7, 347 stems/ha. Seedling density (height Dodonaea angustifolia and other native species important for soil conservation, timber, bee forage and medicinal use.展开更多
The miombo woodland is one of the most extensive woodlands in Africa, supporting livelihoods based on biomass fuel for millions of rural people. However, there are growing concerns about the sustainability of harvesti...The miombo woodland is one of the most extensive woodlands in Africa, supporting livelihoods based on biomass fuel for millions of rural people. However, there are growing concerns about the sustainability of harvesting for biomass fuel (mainly charcoal). Thus, the aim of this study was to examine whether regeneration by coppice is a viable option for sustainably managing miombo woodlands for biomass fuel production. We tested the hypotheses that (1) species, stump diameter, stump height and time since cutting significantly affect the number of sprouts per cut stump (coppice density) and mean sprout height (shoot vigour) and (2) higher coppice density reduces shoot vigour due to competition among coppice shoots in a given stump. In an inventory in areas that were harvested for charcoal production by the local people, 369 stumps of 11 species were recorded with mean coppice stumps ranged from 6 to 84. The mean coppice density ranged from 5 to 8 shoots per stump while the mean height of coppice shoots ranged from 46 to 118 cm with marked interspecific variations. Stump size was signifi- cantly and positively correlated with coppice density for some of the species, but not with shoot vigour for the majority of the species. However, shoot vigour was significantly positively correlated to time since cutting of trees for nearly half of the species. Coppice density had a significant negative correlation with shoot vigour for two species, and a positive correlation for one species. In conclusion, the results provide evidence about the importance of coppice management as a win-win strategy for sustaining charcoal-based rural livelihoods and recovering the miombo woodland ecosystem.展开更多
Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecologica...Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecological functions and environmental signifi- cance, such as decreasing soil erosion, stabilizing sand dunes, preserving species diversity. However, in the last approximate 30 years, the species composition, productivity and distribution area of elm woodland has decreased severely. A series of studies have been carried out to find out whether the climate changes or human disturbances caused the degradation of elm woodland and how these factors af- fected elm woodland. In this study, undisturbed, plowing and grazing elm woodland were investigated in 1983 and 2011 by using Point-Centered Quarter method. The relationship between vegetation changes and environmental factors was analyzed by Bray-Curtis ordination. The results show that in 2011, species diversity and understory productivity of undisturbed elm woodland decrease slightly compared to those of undisturbed elm woodland in 1983. However, nearly 60% of the species is lost in the plowing and grazing elm woodland relative to the species undisturbed elm woodland in 1983. Interestingly, plowing stimulates the growth of elm and certain understory species through furrowing soil and accelerating soil nutrient turnover rate. Grazing disturbance not only leads to species loss and productivity decrease, but also induces changes in elm growth (small, short and twisted). The mean age of the elm was 29 -4- 2 yr in undisturbed and plowing elm woodland, while only 15 yr in the grazing elm woodland. The results of Bray-Curtis ordination analysis show that all sample stands clustered to three groups: Group I including the undisturbed sample stands of 83UE (undisturbed elm wood- land in 1983) and l lUE (undisturbed elm woodland in 2011); Group II including sample stands of PE (elm woodland disturbed by plowing); Group III including samples stands of GE (elm woodland disturbed by grazing). The results indicate that the long time distur- bance of the plowing and grazing have converted elm woodland to different community types. Climate change is not the primary reason causing the degradation of elm woodland, but plowing and grazing disturbance. Both plowing and grazing decrease the vegetation composition and species diversity. Grazing further decreases vegetation productivity and inhibits the growth of elm tree. Therefore, we suggest that reasonable plowing and exclusive grazing would be favorable for future regeneration of degraded elm woodland.展开更多
文摘This essay focuses on three main characters in Thomas Hardy's The woodlanders, and analyzes their psychological complex: John South--Tree Complex, Giles Winterborne--Inferiority Complex, and Marty South---Survival of the Fittest, showing the relationship between man and nature.
基金support by project SUPERB H2020(Systemic solutions for upscaling of urgent ecosystem restoration for forest related biodiversity and ecosystem services)support by project P2013/MAE-2760(Autonomous Community of Madrid)+3 种基金support by project PID2019-107256RB-I00(Spanish Ministry of Science and Innovation)project FAGUS by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Polit ecnica de Madridsupport by projects 9OHUU0-10-3L226X(Autonomous Community of Madrid)RTI2018-094202-BC21 and RTI2018-094202-A-C22(Spanish Ministry of Science and Innovation)。
文摘There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free evolution of natural dynamics by applying minimal or no management,is gaining attention.Natural dynamics is difficult to predict due to the influence of multiple interacting factors such as climatic and edaphic conditions,composition and abundance of species,and the successional character of these species.Here,we study the natural dynamics of a mixed forest located in central Spain,which maintained an open forest structure,due to intensive use,until grazing and cutting were banned in the 1960s.The most frequent woody species in this forest are Fagus sylvatica,Quercus petraea,Quercus pyrenaica,Ilex aquifolium,Sorbus aucuparia,Sorbus aria and Prunus avium,with contrasting shade and drought tolerance.These species are common in temperate European deciduous forest and are found here near their southern distribution limit,except for Q.pyrenaica.In order to analyze forest dynamics and composition,three inventories were carried out in 1994,2005 and 2015.Our results show that,despite the Mediterranean influence,the natural dynamics of this forest has been mainly determined by different levels of shade tolerance.After the abandonment of grazing and cutting,Q.pyrenaica expanded rapidly due to its lower shade tolerance,whereas after canopy closure and forest densification,shade-tolerant species gained ground,particularly F.sylvatica,despite its lower drought and late-frost tolerance.If the current dynamics continue,F.sylvatica will overtake the rest of the species,which will be relegated to sites with shallow soils and steep slopes.Simultaneously,all the multi-centennial beech trees,which are undergoing a rapid mortality and decline process,will disappear.
基金funded by the Fujian Provincial Science and Technology Project(2021N5014,2022N5006)the Key Research Project of the Putian Science and Technology Bureau(2021ZP08,2021ZP09,2021ZP10,2021ZP11,2023GJGZ001).
文摘The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.
基金We acknowledge support from the National Natural Science Foundation of China(NSFC,32060385 and 31860668)the Project of Qinghai Science&Technology Department(2020-ZJ-733).
文摘Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and anthropogenic perturbations due to historical events(e.g.,agricultural development),thus contemporary plant functional composition may be explained by historical woodland change,a type of land cover change.We propose that historical woodland changes may have legacy effects on contemporary plant functional composition.Here,we used partial least squares regression and linear mixed model analyses to test this assumption by coupling data on community weighted means(CWM)and community weighted variance(CWV)of vegetation plots and calculating the time of woodland existence across different periods from AD 0 to 2017.We found that the legacy effects of historical land cover changes on CWM and CWV during the existence time of woodland,particularly from AD 0 to 900,were drivers of contemporary plant functional composition at large spatial scales.Furthermore,historical woodland changes can affect contemporary plant functional composition,depending on the biome type.Particularly,the CWM of plant height,seed mass,and seed length showed the strongest correlations with woodland changes from AD 1910 to 2010 in tropics with year-round rain,and the CWM of leaf traits correlated with woodland changes from AD 0 to 1700 in tropics with summer rain.Our study provides the effective evidence on the legacy of historical woodland changes and the effects on contemporary plant functional composition,which is crucial with respect to effective management of plant diversity and assessing ecosystem functions and services from local to global scales over time.
文摘It has been reported that changes to miombo woodland ecosystems through conversion to other land uses alter tree species diversity and soil properties. The aim was to assess whether the Important Value Index (IVI), Shannon- Wiener diversity index (H'), and soil chemical properties differ between land uses in the Kibutuka miombo woodland ecosystem. IVI and H' were used to indicate tree species dominance and diversity. Statistical analyses were performed in R software. IVI of Brachystegia was significantly (p Combretum, Milletia, and Diplorhynchus had significantly (p p p p < 0.05) higher in intact forests than in the degraded forest. Degradation seen at a landscape scale for vegetation parameters, but not for soil parameters, indicates that the land use change taking place in the Kibutuka miombo woodland ecosystem is recent and the degradation seen in vegetation is still not reflected in the soil properties.
文摘The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland.
文摘The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.
基金supported by The Future Okavango Project(Grant Number(01LL0912A))
文摘This study in the dry tropical woodlands of SE Angola in Cuando-Cubango Province assessed the diversity and composition of woody species in fallows compared to those in mature woodlands. We assessed the population structure of the most harvested woody species by calculating size class distribution and evaluated their regeneration potential based on the density of saplings. The vegetation was surveyed in 20 plots of 20 × 50 m(1000 m2). In each plot, we measured the diameter at breast height(DBH) of all woody species with DBH ≥ 5 cm. The saplings were counted, identified and recorded; 718 individuals, corresponding to 34 species in 32 genera and 15 families were recorded. The size class distribution of target woody species showed three different patterns in fallows and mature woodlands. In general,most of the smaller diameter classes had more individuals than the larger ones did, showing that the regeneration may take place. However, in some diameter classes, the absence of larger stems indicated selective logging of larger trees. Few saplings were recorded in the fallows or mature woodlands; fire frequency and intensity is probably the main obstacle for seed germination and seedling survival rates in the studied area.
基金supported by Special Fund for Public Welfare Technology Research of Agricultural Industry (200903014)
文摘We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia to determine plant community types and species distribution patterns and their relationships with environmental variables, including altitude, pH, cation exchange capacity, electrical conductivity (EC), and moisture. We used a selective approach with a systematic sampling design. A total of 74 quadrats, each 25m × 25m at intervals of 150-200 m were sampled along the established transect lines. For herbaceous vegetation and soil data collection, five subquadrats each lm x lm were established at the four corners and the center of each quadrat. Three community types were identified using TWINSPAN analysis. All three community types showed high diversity (Shannon-Weiner index), the highest in community type II at 3.55. The highest similarity coefficient was 0.49 (49%) between community types II and III, reflecting 0.51 (51%) dissimilarity in their species richness. The canonical correspondence ordination diagram revealed that the distribution pattern of community type I was explained by moisture while that of community types III and II was explained by EC and altitude and moisture, respectively. Altitude was the most statistically significant environmental variable, followed by moisture and EC in determining the total variation in species composition and distribution patterns while pH and cation exchange capacity were non significant. In conclusion, we recommend that any intervention should take into account these three discrete community types and their environmental settings to make the intervention more successful.
文摘We studied woodland vegetation in broad-leaved deciduous woodlands of Metema in northwestern Amhara regional state, Ethiopia Our objective was to describe plant species composition, diversity, re- generation status, and population structure by a selective approach with a systematic sampling design. A total of 74 quadrats (each for 25 m x 25 m, spaced at intervals of 150--200 m) were sampled along established tran- sect lines following the homogeneity of the vegetation. Vegetation data including cover-abundance, height, diameter at breast height (DBH), and numbers of seedlings and saplings of woody species were analyzed using Excel spreadsheet, Shannon Weiner diversity index, and PAST version 1.62. A total of 87 vascular plant species of 74 genera and 36 families were recorded. The dominant family was Fabaceae represented by 16 (18.39 %) species of 13 genera. Shannon Weiner diversity and evenness were 3.67 and 0.82, respectively, which showed that the area was en- dowed with rich floral diversity evenly distributed. The vegetation structure, as quantified by cumulative diameter class frequency distribution, plotted as an interrupted inverted-J- shape pattern with a sharp decrease in the 2nd diameter class. This indicated poor vegetation structure. The diameter classes frequency distributions of selected species plotted in four general patterns i.e., interrupted Inverted-J-shape, J-shape, Bell-shape and Irregular-shape. In conclusion, although the area showed high floral diversity and evenness, woody species including Sterculea setigera, Boswellia papyrifera, and Pterocarpus lucens showed lowest recruitment of seedlings and saplings.
基金supported by the Key Project of Knowledge Innovation Programme of CAS(No.KZCX1-YW-06-02)the National Basic Research Priorities Program of China(No.2006CB403306)the National Natural Science Foundation of China(No.40601036).
文摘This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishponds, and the nitrogen flux in the riparian zone of Yuqiao Reservoir. The groundwater nitrate-N concentrations in cropland were the highest among the four land uses. Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p 〈 0.05) higher than in 5yr woodland. The lowest nitrogen concentrations were detected in fishponds. Nitrate-N was the main form in cropland and 2yr woodland, whereas both nitrate-N and dissolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds. But, ammonium-N was the main form in the ephemeral stream. During the rainy season, the groundwater flow with dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient. The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen. The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow. The fishpond was not an important pollution source for nitrogen transfer via shallow groundwater.
基金This paper is funded by National Natural Science Fund (30171205) and National Tenth-year-plan Key Sci&tech Project (2005BA517A04)
文摘Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.
文摘Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems.However,equations for dry deciduous woodland ecosystems,an important carbon sink in the lowland areas of Ethiopia have not as yet been developed.This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass(AGB)of dominant woody species based on data from destructive sampling for Combretum collinum,Combretum molle,Combretum harotomannianum,Terminalia laxiflora and mixed-species.Diameter at breast height ranged from 5 to 30 cm.Two empirical equations were developed using DBH(Eq.1)and height(Eq.2).Equation 2 gave better AGB estimations than Eq.1.The inclusion of both DBH and H were the best estimate biometric variables for AGB.Further,the equations were evaluated and compared with common generic allometric equations.The result showed that our allometric equations are appropriate for estimating AGB.The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems.
基金supported by Vice Chancellor for Research,Shiraz University,IranErasmus Mundus scholarship for travel to Goettingen,Germany
文摘The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark-Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough.
文摘Main influencing factors affecting the ecology benefit value of woodland are analyzed,mainly including the water conservation value,environment cleaning value,water and soil conservation value,and climate regulation value.Evaluation model of the ecology benefit value of woodland is put forward which can deal with the uncertain information.Method for determining index weights is discussed,as well as the processing method for uncertain information during the evaluation of ecology benefit value of woodland.Finally,the feasibility and convenience of the evaluation model of the woodland ecology benefit value are illustrated with examples.
文摘The aim of the study was to assess the impact of E. camaldulensis plantation established in a semi-arid area on native woody plants diversity and density. Nested quadrant plot design, having an area of 15 m × 15 m used to collect data. Totally, 37 species at the plantation and 30 species at the native woodland, belonging to 24 families, identified. Species diversity (H′) was 1.57 at the plantation and 2.09 at the woodland forest. As for density of understory woody plants (height ≥ 1 m) the plantation forest harbored 6, 604 stems/ha while the native woodland had 7, 347 stems/ha. Seedling density (height Dodonaea angustifolia and other native species important for soil conservation, timber, bee forage and medicinal use.
基金financially supported by the Swedish Research Link
文摘The miombo woodland is one of the most extensive woodlands in Africa, supporting livelihoods based on biomass fuel for millions of rural people. However, there are growing concerns about the sustainability of harvesting for biomass fuel (mainly charcoal). Thus, the aim of this study was to examine whether regeneration by coppice is a viable option for sustainably managing miombo woodlands for biomass fuel production. We tested the hypotheses that (1) species, stump diameter, stump height and time since cutting significantly affect the number of sprouts per cut stump (coppice density) and mean sprout height (shoot vigour) and (2) higher coppice density reduces shoot vigour due to competition among coppice shoots in a given stump. In an inventory in areas that were harvested for charcoal production by the local people, 369 stumps of 11 species were recorded with mean coppice stumps ranged from 6 to 84. The mean coppice density ranged from 5 to 8 shoots per stump while the mean height of coppice shoots ranged from 46 to 118 cm with marked interspecific variations. Stump size was signifi- cantly and positively correlated with coppice density for some of the species, but not with shoot vigour for the majority of the species. However, shoot vigour was significantly positively correlated to time since cutting of trees for nearly half of the species. Coppice density had a significant negative correlation with shoot vigour for two species, and a positive correlation for one species. In conclusion, the results provide evidence about the importance of coppice management as a win-win strategy for sustaining charcoal-based rural livelihoods and recovering the miombo woodland ecosystem.
基金Under the auspices of the Seventh Framework Programme(European Commission,No.226818)National Natural Science Foundation of China(No.31070294,31072070,31100331)
文摘Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecological functions and environmental signifi- cance, such as decreasing soil erosion, stabilizing sand dunes, preserving species diversity. However, in the last approximate 30 years, the species composition, productivity and distribution area of elm woodland has decreased severely. A series of studies have been carried out to find out whether the climate changes or human disturbances caused the degradation of elm woodland and how these factors af- fected elm woodland. In this study, undisturbed, plowing and grazing elm woodland were investigated in 1983 and 2011 by using Point-Centered Quarter method. The relationship between vegetation changes and environmental factors was analyzed by Bray-Curtis ordination. The results show that in 2011, species diversity and understory productivity of undisturbed elm woodland decrease slightly compared to those of undisturbed elm woodland in 1983. However, nearly 60% of the species is lost in the plowing and grazing elm woodland relative to the species undisturbed elm woodland in 1983. Interestingly, plowing stimulates the growth of elm and certain understory species through furrowing soil and accelerating soil nutrient turnover rate. Grazing disturbance not only leads to species loss and productivity decrease, but also induces changes in elm growth (small, short and twisted). The mean age of the elm was 29 -4- 2 yr in undisturbed and plowing elm woodland, while only 15 yr in the grazing elm woodland. The results of Bray-Curtis ordination analysis show that all sample stands clustered to three groups: Group I including the undisturbed sample stands of 83UE (undisturbed elm wood- land in 1983) and l lUE (undisturbed elm woodland in 2011); Group II including sample stands of PE (elm woodland disturbed by plowing); Group III including samples stands of GE (elm woodland disturbed by grazing). The results indicate that the long time distur- bance of the plowing and grazing have converted elm woodland to different community types. Climate change is not the primary reason causing the degradation of elm woodland, but plowing and grazing disturbance. Both plowing and grazing decrease the vegetation composition and species diversity. Grazing further decreases vegetation productivity and inhibits the growth of elm tree. Therefore, we suggest that reasonable plowing and exclusive grazing would be favorable for future regeneration of degraded elm woodland.