Forest and non-forest vegetation fulfils many non-productive and productive functions. A good understanding of the trajectories and drivers of the woody vegetation change is necessary for the relevant management. Rece...Forest and non-forest vegetation fulfils many non-productive and productive functions. A good understanding of the trajectories and drivers of the woody vegetation change is necessary for the relevant management. Recently, the number of studies devoted to monitoring forest cover changes has increased. However, these works do not fully distinguish between different categories of forest and non-forest woody vegetation. The main aim of the study was to propose a classification system for monitoring historic changes of woody vegetation in the landscape. The period of the last 150 years was mapped through three time-lines (1842, 1953 and 2011). Data were obtained by interpreting historic maps (Stable Cadastral map of 1842) and historical (1953) and current orthophoto (2011) using ArcGIS tools. The classification was applied on the example of Sokolov region (57 km2) located in western Bohemia. The result of the research is a proposal for classifying woody vegetation stands into four categories based on the structural and localisation criteria: (1) Line adjacent woodlands, (2) Landscape woodlands, (3) Settlement woodlands, and (4) Compact woodlands. Information on the woody vegetation development using the proposed classification system is important for understanding the patterns, pressures, and driving forces that led to the formation of the present-day forest and non-forest woody vegetation in the landscape. The results can also be applied as a basis for future forest management practice as they can be used in other different fields, e.g. history, archaeology etc.展开更多
Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence ...Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence of canopy gap size and the relationship of gap regime attributes to diversity measures and regeneration. The average gap size in the study area was found to be 396 m2 and around half of gaps were 4–8 years old. Gaps created by natural single tree fall were smaller in size but significantly higher in number. Diversity and regeneration of woody species were compared with canopy gaps and intact vegetation. Species richness and diversity was higher in gaps than in intact vegetation. Macaranga peltata, a shade intolerant species dominated gaps while intact vegetation was dominated by shade tolerant Kingiodendron pinnatum.Gap size significantly influenced species diversity and regeneration. Gap area and age were significantly and negatively correlated with diversity measures but positively correlated with regeneration. Among all the attributes of gaps, regeneration was significantly positively correlated with light intensity. Gaps maintained species diversity and favored regeneration of woody species. In addition to gap size and age, other gap ecological attributes also affected species diversity and regeneration.展开更多
The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya,India on the basis of various disturbance parameters such as density,Total Basal Cover(TBC) of cut stumps,l...The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya,India on the basis of various disturbance parameters such as density,Total Basal Cover(TBC) of cut stumps,lopping percentage and grazing intensities.On the basis of canopy cover and frequency of disturbances(%),the studied forests were divided into highly disturbed(HD),moderately disturbed(MD) and least disturbed(LD) categories.The HD forests had the lowest canopy cover,lowest density and lowest TBC and the LD had the highest canopy cover,highest density and highest TBC.The MD forests occupied the intermediate position with respect to these parameters.Species richness was least in HD forests,highest in one of the MD forests while LD forest occupied an intermediate position.The percentage of regenerating species was lowest(54%) in HD and highest(72%) in MD.The density of seedlings and saplings was higher in one of the MD forests as compared to HD and LD.We concluded that the moderate disturbances do not affect the vegetation adversely;however the increased degree of disturbance causes loss in plant diversity;affects regeneration and changes community characteristics.Construction of hydroelectric projects at various places in the study area was found to be one of the most important sources of anthropogenic disturbances in addition to the routine anthropogenic disturbances like grazing,fuelwood collection and fodder extraction.If all proposed dams in the Indian Himalaya are constructed combined with weak national environmental impact assessment and implementation,it will result in a significant loss of species.Therefore,various agents of disturbances should be evaluated in cumulative manner and any developmental activities such as hydropower projects,which trigger various natural and anthropogenic disturbances,should be combined with proper cumulative environmental impact assessment and effective implementation to minimise the anticipated loss of vegetation.展开更多
基金supported by Ministry of Agriculture of the Czech Republic,project No.CR QH 82106 Re-cultivation as a tool for landscape functionality regeneration after opencast brown coal mining.
文摘Forest and non-forest vegetation fulfils many non-productive and productive functions. A good understanding of the trajectories and drivers of the woody vegetation change is necessary for the relevant management. Recently, the number of studies devoted to monitoring forest cover changes has increased. However, these works do not fully distinguish between different categories of forest and non-forest woody vegetation. The main aim of the study was to propose a classification system for monitoring historic changes of woody vegetation in the landscape. The period of the last 150 years was mapped through three time-lines (1842, 1953 and 2011). Data were obtained by interpreting historic maps (Stable Cadastral map of 1842) and historical (1953) and current orthophoto (2011) using ArcGIS tools. The classification was applied on the example of Sokolov region (57 km2) located in western Bohemia. The result of the research is a proposal for classifying woody vegetation stands into four categories based on the structural and localisation criteria: (1) Line adjacent woodlands, (2) Landscape woodlands, (3) Settlement woodlands, and (4) Compact woodlands. Information on the woody vegetation development using the proposed classification system is important for understanding the patterns, pressures, and driving forces that led to the formation of the present-day forest and non-forest woody vegetation in the landscape. The results can also be applied as a basis for future forest management practice as they can be used in other different fields, e.g. history, archaeology etc.
基金funded by the National Remote Sensing Centre,Hyderabad,India under NRSC-DOS-DBTGovt.of India project entitled‘‘Biodiversity Characterization in Southern parts of Karnataka’’(Project Number:UAS(B)/DR/GOI/245/2011-12)
文摘Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence of canopy gap size and the relationship of gap regime attributes to diversity measures and regeneration. The average gap size in the study area was found to be 396 m2 and around half of gaps were 4–8 years old. Gaps created by natural single tree fall were smaller in size but significantly higher in number. Diversity and regeneration of woody species were compared with canopy gaps and intact vegetation. Species richness and diversity was higher in gaps than in intact vegetation. Macaranga peltata, a shade intolerant species dominated gaps while intact vegetation was dominated by shade tolerant Kingiodendron pinnatum.Gap size significantly influenced species diversity and regeneration. Gap area and age were significantly and negatively correlated with diversity measures but positively correlated with regeneration. Among all the attributes of gaps, regeneration was significantly positively correlated with light intensity. Gaps maintained species diversity and favored regeneration of woody species. In addition to gap size and age, other gap ecological attributes also affected species diversity and regeneration.
文摘The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya,India on the basis of various disturbance parameters such as density,Total Basal Cover(TBC) of cut stumps,lopping percentage and grazing intensities.On the basis of canopy cover and frequency of disturbances(%),the studied forests were divided into highly disturbed(HD),moderately disturbed(MD) and least disturbed(LD) categories.The HD forests had the lowest canopy cover,lowest density and lowest TBC and the LD had the highest canopy cover,highest density and highest TBC.The MD forests occupied the intermediate position with respect to these parameters.Species richness was least in HD forests,highest in one of the MD forests while LD forest occupied an intermediate position.The percentage of regenerating species was lowest(54%) in HD and highest(72%) in MD.The density of seedlings and saplings was higher in one of the MD forests as compared to HD and LD.We concluded that the moderate disturbances do not affect the vegetation adversely;however the increased degree of disturbance causes loss in plant diversity;affects regeneration and changes community characteristics.Construction of hydroelectric projects at various places in the study area was found to be one of the most important sources of anthropogenic disturbances in addition to the routine anthropogenic disturbances like grazing,fuelwood collection and fodder extraction.If all proposed dams in the Indian Himalaya are constructed combined with weak national environmental impact assessment and implementation,it will result in a significant loss of species.Therefore,various agents of disturbances should be evaluated in cumulative manner and any developmental activities such as hydropower projects,which trigger various natural and anthropogenic disturbances,should be combined with proper cumulative environmental impact assessment and effective implementation to minimise the anticipated loss of vegetation.