A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxia...A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.展开更多
In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition ...In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition and electromagnetic characteristics of SiO2-coated and uncoated metal fibers were studied using SEM, EDAX, and a voter network analyzer. The reflectivity was simulated using the RAMCAD software. The electromagnetic parameters and absorption properties of SiO2-coated metal fibers were improved greatly due to optimal impendence matching and the electric conductivity decreased, compared to those of uncoated materials.展开更多
This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limi...This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limited air. Percent grafting and percent efficiency have been deter-mined as a function of total dose, dose rate, concentration of monomer, wool weight and reactiontemperature. Graft copolymers are characterized with infrared (IR) spectroscopy, scanning elec-tron microscopy (SEM), and X--ray diffractometer. Properties of the grafts were studied, and compared with the virgin fiber.展开更多
Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fib...Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.展开更多
The molecular conformation and the microstructure of the slenderized wool fibers have been studied by the Raman spectroscopy. The typical bands analyzed in this paper include the amideⅠand amide Ⅲ regions, the CC sk...The molecular conformation and the microstructure of the slenderized wool fibers have been studied by the Raman spectroscopy. The typical bands analyzed in this paper include the amideⅠand amide Ⅲ regions, the CC skeletal vibration region, and the SS and CS bond vibration regions. The experimental results show that ⅰ) the Raman spectroscopy can reveal the secondary structural transformation from αhelical to βpleated sheet begin at the early stage of stretching; ⅱ) the stretching mechanism of wool fibers can be divided into two different mechanisms, i.e. the secondary structural transformation and the slippage of the polypeptide chain; and ⅲ) the stretching leads to the increasing of the amount of the disordered conformation and the decreasing of the amount of SS bonds.展开更多
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ...Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.展开更多
Science is the basis of the country’s development and wealth. In particular, it is necessary to effectively use advanced scientific developments and technical achievements in order to strengthen the economy in the pe...Science is the basis of the country’s development and wealth. In particular, it is necessary to effectively use advanced scientific developments and technical achievements in order to strengthen the economy in the period when the desire for innovation in all fields is still growing. In theoretical-experimental Scientific Research work, both theoretical and experimental results are achieved, and it is more useful to withstand more theoretical-experimental loads for a longer period of time. The occurrences in the production process of natural wool fiber technologists are a complex of physical and mechanical phenomena, which can be used only by the modern achievements of science and technology. In most cases, the parameter relationship with the factors influencing the technological process or the object can open a curve without any other things.展开更多
In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricat...In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.展开更多
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed...Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.展开更多
Fiber supercapacitors(FSs)based on transition metal oxides(TMOs)have garnered considerable attention as energy stor-age solutions for wearable electronics owing to their exceptional characteristics,including superior ...Fiber supercapacitors(FSs)based on transition metal oxides(TMOs)have garnered considerable attention as energy stor-age solutions for wearable electronics owing to their exceptional characteristics,including superior comfortability and low weights.These materials are known to exhibit high energy densities,high specific capacitances,and fast redox reactions.However,current fabrication methods for these structures primarily rely on chemical deposition,often resulting in undesir-able material structures and necessitating the use of additives,which can degrade the electrochemical performance of such structures.Herein,physically deposited TMO nanoribbon yarns generated via delamination engineering of nanopatterned TMO/metal/TMO trilayer arrays are proposed as potential high-performance FSs.To prepare these arrays,the target materials were initially deposited using a nanoline mold,and subsequently,the nanoribbon was suspended through selective plasma etching to obtain the desired twisted yarn structures.Because of the direct formation of TMOs on Ni electrodes,a high energy/power density and excellent electrochemical stability were achieved in asymmetric FS devices incorporating CoNixOy nanoribbon yarns and graphene fibers.Furthermore,a triboelectric nanogenerator,pressure sensor,and flexible light-emitting diode were synergistically combined with the FS.The integration of wearable electronic components,encompassing energy harvesting,energy storage,and powering sensing/display devices,is promising for the development of future smart textiles.展开更多
Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of...Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries.展开更多
Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a...Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.展开更多
Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are est...Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are established. It can describe the response of piezoelectric fibers subject to an axial force and an external voltage. A cantilever bar subject to a tip axial force and an external voltage on the electrodes is considered. The internal energy density in thermodynamic equilibrium is obtained. The total internal energy is calculated by integrating over the entire volume of the bar. The generalized displacement of the tip axial force is the tip elongation δ, and the generalized displacement of the voltage is the electrical charge Q on the electrodes. In the established constitutive equations, the excitation (input) parameters are the axial force and the external voltage, the response (output) parameters are the tip elongation and the electric charge. And the response parameters are related to the excitation parameters by a 2× 2 piezoelectric matrix. Finally, two experiments using MPF as a sensor or an actuator are performed to verify the constitutive equations. And experimental results are compared with analytical ones.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
An optimization method for sound absorption of gradient(multi-layered) sintered metal fiber felts is presented. The theoretical model based on dynamic flow resistivity is selected to calculate the sound absorption coe...An optimization method for sound absorption of gradient(multi-layered) sintered metal fiber felts is presented. The theoretical model based on dynamic flow resistivity is selected to calculate the sound absorption coefficient of the sintered metal fiber felts since it only requires three key morphological parameters: fiber diameter, porosity and layer thickness. The model predictions agree well with experimental measurements. Objective functions and constraint conditions are then set up to optimize separately the distribution of porosity, fiber diameter, and simultaneous porosity and fiber diameter in the metal fiber. The optimization problem for either a sole frequency or a pre-specified frequency range is solved using a genetic algorithm method. Acoustic performance comparison between optimized and non-optimized metal fibers is presented to confirm the effectiveness of the optimization method. Gradient sintered metal fiber felts hold great potential for noise control applications particularly when stringent restriction is placed on the total volume and/or weight of sound absorbing material allowed to use.展开更多
The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine f...The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine fibers synthesized were featured with diameters of around 1 μm and lengths of as long as 2 m for Ni fibers, 0.5 m for iron fibers, 1 m for Fe-Ni fibers. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by FTIR, XRD,TG/DSC and SEM, respectively. The gel spinnability largely depends on molecular structures of metal-carboxylate complexes formed in the gel. It is reasoned that these gels consist of linear-type structural molecules [(C6H6O7)Ni]n or [(C6H5O7)2Ni3] for the nickel citrate gel, [(C3H5O3)3Fe] for the ferric lactate gel, [(C6H5O7)5(NiFe)3] for the iron-nickel citrate gel respectively and the gels obtain showed a good spinning performance.展开更多
The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomp...The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.展开更多
The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and proper...The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.展开更多
Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-pu...Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-purposes of fiber-forming, energy saving, and waste heat recovery, the modifying agents that can improve the acidity coefficient of slag effectively, economically, and environmentally were investigated. Three agents with different acidity coefficients were adopted to modify slag and manufacture wool fibers. The effect of agent and slag proportion on the melting temperature and viscosity of molten slag was studied at a fixed acidity coefficient of 1.8 and 2.0. The results indicate that the sample modified with high acidity coefficient agent and high slag proportion has lower melting temperature and viscosity. The effect of agent and slag temperature on the fiber diameter was also investigated when the acidity coefficient of slag is 2.0. At a fixed slag proportion of 50 wt.%, the mean diameter decreases with increasing temperature and decreasing viscosity coefficient. Besides, the temperature drops caused by the addition of agents and energy consumption of samples for heating the slag were also analyzed.展开更多
基金Projects(51475172,51275180,51375177) supported by the National Natural Science Foundation of ChinaProject(S2013040016899) supported by the Natural Science Foundation of Guangdong Province,ChinaProjects(2013ZM0003,2013ZZ017) supported by the Fundamental Research Funds for the Central Universities,South China University of Technology,China
文摘A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.
文摘In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition and electromagnetic characteristics of SiO2-coated and uncoated metal fibers were studied using SEM, EDAX, and a voter network analyzer. The reflectivity was simulated using the RAMCAD software. The electromagnetic parameters and absorption properties of SiO2-coated metal fibers were improved greatly due to optimal impendence matching and the electric conductivity decreased, compared to those of uncoated materials.
基金The project was supported by The National Natural Science Foundation of China.
文摘This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limited air. Percent grafting and percent efficiency have been deter-mined as a function of total dose, dose rate, concentration of monomer, wool weight and reactiontemperature. Graft copolymers are characterized with infrared (IR) spectroscopy, scanning elec-tron microscopy (SEM), and X--ray diffractometer. Properties of the grafts were studied, and compared with the virgin fiber.
文摘Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.
文摘The molecular conformation and the microstructure of the slenderized wool fibers have been studied by the Raman spectroscopy. The typical bands analyzed in this paper include the amideⅠand amide Ⅲ regions, the CC skeletal vibration region, and the SS and CS bond vibration regions. The experimental results show that ⅰ) the Raman spectroscopy can reveal the secondary structural transformation from αhelical to βpleated sheet begin at the early stage of stretching; ⅱ) the stretching mechanism of wool fibers can be divided into two different mechanisms, i.e. the secondary structural transformation and the slippage of the polypeptide chain; and ⅲ) the stretching leads to the increasing of the amount of the disordered conformation and the decreasing of the amount of SS bonds.
文摘Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM.
文摘Science is the basis of the country’s development and wealth. In particular, it is necessary to effectively use advanced scientific developments and technical achievements in order to strengthen the economy in the period when the desire for innovation in all fields is still growing. In theoretical-experimental Scientific Research work, both theoretical and experimental results are achieved, and it is more useful to withstand more theoretical-experimental loads for a longer period of time. The occurrences in the production process of natural wool fiber technologists are a complex of physical and mechanical phenomena, which can be used only by the modern achievements of science and technology. In most cases, the parameter relationship with the factors influencing the technological process or the object can open a curve without any other things.
基金supported by the Natural Science Fundation of Fujian Province of China (No. 2017J06015)the Foundation of Public Welfare Research and Capacity Building in Guangdong Province (No. 2014A010106002)+2 种基金the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC) under Project No. 33600000-15-ZC06070004the supports from the Fundamental Research Funds for Central Universities, the Xiamen University (No. 20720160079)the Collaborative Innovation Center of HighEnd Equipment Manufacturing in Fujian are also acknowledged
文摘In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123)Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)Science and Technology Plans of Tianjin(19PTSYJC00010)Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.
基金financially supported by the National Creative Research Initiative(CRI)Center for Multi-Dimensional Directed Nanoscale Assembly(2015R1A3A2033061)a Creative Challenge research grant(RS-2023-00248902)through the National Research Foundation of Korea(NRF),funded by the Ministry of Science+2 种基金supported by the Collabo R&D between Industry,Academy,and Research Institute(RS-2024-00428937)funded by the Ministry of SMEs and Startups(MSS,Korea)This study was also supported by the Development Program of Machinery and Equipment Industrial Technology(20018235,Development of an inline nanoimprinter for nanophotonic device)funded by the Ministry of Trade,Industry,&Energy(MI,Korea),the Ministry of Culture,Sports,and Tourism,and the Korea Creative Content Agency(Project Number:R2022020033)It was also supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2021R1A2C3008742).
文摘Fiber supercapacitors(FSs)based on transition metal oxides(TMOs)have garnered considerable attention as energy stor-age solutions for wearable electronics owing to their exceptional characteristics,including superior comfortability and low weights.These materials are known to exhibit high energy densities,high specific capacitances,and fast redox reactions.However,current fabrication methods for these structures primarily rely on chemical deposition,often resulting in undesir-able material structures and necessitating the use of additives,which can degrade the electrochemical performance of such structures.Herein,physically deposited TMO nanoribbon yarns generated via delamination engineering of nanopatterned TMO/metal/TMO trilayer arrays are proposed as potential high-performance FSs.To prepare these arrays,the target materials were initially deposited using a nanoline mold,and subsequently,the nanoribbon was suspended through selective plasma etching to obtain the desired twisted yarn structures.Because of the direct formation of TMOs on Ni electrodes,a high energy/power density and excellent electrochemical stability were achieved in asymmetric FS devices incorporating CoNixOy nanoribbon yarns and graphene fibers.Furthermore,a triboelectric nanogenerator,pressure sensor,and flexible light-emitting diode were synergistically combined with the FS.The integration of wearable electronic components,encompassing energy harvesting,energy storage,and powering sensing/display devices,is promising for the development of future smart textiles.
基金National Natural Science Foundation of China(51903113,51763014,and 52073133)China Postdoctoral Science Foundation(2022T150282,2019M663858)Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries.
基金Projects(50930005,51075155)supported by the National Natural Science Foundation of ChinaProject(20100172110001)supported by PhD Programs Foundation of Ministry of Education of China
文摘Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.
基金the National High Technology Research and Development Program of China(863Pro-gram)(2007AA03Z104)~~
文摘Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are established. It can describe the response of piezoelectric fibers subject to an axial force and an external voltage. A cantilever bar subject to a tip axial force and an external voltage on the electrodes is considered. The internal energy density in thermodynamic equilibrium is obtained. The total internal energy is calculated by integrating over the entire volume of the bar. The generalized displacement of the tip axial force is the tip elongation δ, and the generalized displacement of the voltage is the electrical charge Q on the electrodes. In the established constitutive equations, the excitation (input) parameters are the axial force and the external voltage, the response (output) parameters are the tip elongation and the electric charge. And the response parameters are related to the excitation parameters by a 2× 2 piezoelectric matrix. Finally, two experiments using MPF as a sensor or an actuator are performed to verify the constitutive equations. And experimental results are compared with analytical ones.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.
基金supported by the National Natural Science Foundation of China(Grant No.51528501)the Fundamental Research Funds for Central Universities(Grant No.2014qngz12)Xin is supported by China Scholarship Council as a visiting scholar to Harvard University
文摘An optimization method for sound absorption of gradient(multi-layered) sintered metal fiber felts is presented. The theoretical model based on dynamic flow resistivity is selected to calculate the sound absorption coefficient of the sintered metal fiber felts since it only requires three key morphological parameters: fiber diameter, porosity and layer thickness. The model predictions agree well with experimental measurements. Objective functions and constraint conditions are then set up to optimize separately the distribution of porosity, fiber diameter, and simultaneous porosity and fiber diameter in the metal fiber. The optimization problem for either a sole frequency or a pre-specified frequency range is solved using a genetic algorithm method. Acoustic performance comparison between optimized and non-optimized metal fibers is presented to confirm the effectiveness of the optimization method. Gradient sintered metal fiber felts hold great potential for noise control applications particularly when stringent restriction is placed on the total volume and/or weight of sound absorbing material allowed to use.
基金the National Natural Science Foundation of China(No.50474038,50674048)
文摘The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine fibers synthesized were featured with diameters of around 1 μm and lengths of as long as 2 m for Ni fibers, 0.5 m for iron fibers, 1 m for Fe-Ni fibers. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by FTIR, XRD,TG/DSC and SEM, respectively. The gel spinnability largely depends on molecular structures of metal-carboxylate complexes formed in the gel. It is reasoned that these gels consist of linear-type structural molecules [(C6H6O7)Ni]n or [(C6H5O7)2Ni3] for the nickel citrate gel, [(C3H5O3)3Fe] for the ferric lactate gel, [(C6H5O7)5(NiFe)3] for the iron-nickel citrate gel respectively and the gels obtain showed a good spinning performance.
基金Projects(50474038 50674048) supported by the National Natural Science Foundation of China
文摘The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.
文摘The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.
基金the National Natural Science Foundation of China(Grant No.51974054)Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJQN202201537)+2 种基金Research Foundation of Chongqing University of Science and Technology(No.ckrc2020017)Natural Science Foundation Project of Chongqing(No.cstc2021jcyj-msxmX0911)Chongqing Science and Technology Commission(No.sl202100000144).
文摘Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-purposes of fiber-forming, energy saving, and waste heat recovery, the modifying agents that can improve the acidity coefficient of slag effectively, economically, and environmentally were investigated. Three agents with different acidity coefficients were adopted to modify slag and manufacture wool fibers. The effect of agent and slag proportion on the melting temperature and viscosity of molten slag was studied at a fixed acidity coefficient of 1.8 and 2.0. The results indicate that the sample modified with high acidity coefficient agent and high slag proportion has lower melting temperature and viscosity. The effect of agent and slag temperature on the fiber diameter was also investigated when the acidity coefficient of slag is 2.0. At a fixed slag proportion of 50 wt.%, the mean diameter decreases with increasing temperature and decreasing viscosity coefficient. Besides, the temperature drops caused by the addition of agents and energy consumption of samples for heating the slag were also analyzed.