期刊文献+
共找到51,742篇文章
< 1 2 250 >
每页显示 20 50 100
Fine-tuning electronic structure of N-doped graphitic carbon-supported Co-and Fe-incorporated Mo_(2)C to achieve ultrahigh electrochemical water oxidation activity 被引量:2
1
作者 Md.Selim Arif Sher Shah Hyeonjung Jung +3 位作者 Vinod K.Paidi Kug-Seung Lee Jeong Woo Han Jong Hyeok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期134-149,共16页
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated... Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance. 展开更多
关键词 fine-tuning electronic structures heteronanostructures Mo_(2)C multimetal(Co/Fe) oxygen evolution reaction
下载PDF
Comparing Fine-Tuning, Zero and Few-Shot Strategies with Large Language Models in Hate Speech Detection in English
2
作者 Ronghao Pan JoséAntonio García-Díaz Rafael Valencia-García 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2849-2868,共20页
Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning... Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives. 展开更多
关键词 Hate speech detection zero-shot few-shot fine-tuning natural language processing
下载PDF
Optimizing Enterprise Conversational AI: Accelerating Response Accuracy with Custom Dataset Fine-Tuning
3
作者 Yash Kishore 《Intelligent Information Management》 2024年第2期65-76,共12页
As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidab... As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidable challenges. These models, honed on vast and diverse datasets, have undoubtedly pushed the boundaries of natural language understanding and generation. However, they often stumble when faced with the intricate demands of nuanced enterprise applications. This research advocates for a strategic paradigm shift, urging enterprises to embrace a fine-tuning approach as a means to optimize conversational AI. While generalized LLMs are linguistic marvels, their inability to cater to the specific needs of businesses across various industries poses a critical challenge. This strategic shift involves empowering enterprises to seamlessly integrate their own datasets into LLMs, a process that extends beyond linguistic enhancement. The core concept of this approach centers on customization, enabling businesses to fine-tune the AI’s functionality to fit precisely within their unique business landscapes. By immersing the LLM in industry-specific documents, customer interaction records, internal reports, and regulatory guidelines, the AI transcends its generic capabilities to become a sophisticated conversational partner aligned with the intricacies of the enterprise’s domain. The transformative potential of this fine-tuning approach cannot be overstated. It enables a transition from a universal AI solution to a highly customizable tool. The AI evolves from being a linguistic powerhouse to a contextually aware, industry-savvy assistant. As a result, it not only responds with linguistic accuracy but also with depth, relevance, and resonance, significantly elevating user experiences and operational efficiency. In the subsequent sections, this paper delves into the intricacies of fine-tuning, exploring the multifaceted challenges and abundant opportunities it presents. It addresses the technical intricacies of data integration, ethical considerations surrounding data usage, and the broader implications for the future of enterprise AI. The journey embarked upon in this research holds the potential to redefine the role of conversational AI in enterprises, ushering in an era where AI becomes a dynamic, deeply relevant, and highly effective tool, empowering businesses to excel in an ever-evolving digital landscape. 展开更多
关键词 fine-tuning DATASET AI CONVERSATIONAL ENTERPRISE LLM
下载PDF
基于Word2Vec和LDA主题模型的中国省级五年规划“文化政策”文本研究 被引量:1
4
作者 高娜 东梅 《网络安全与数据治理》 2024年第7期47-55,共9页
运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、... 运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、技术应用等方面随时间推移呈现不同演化趋势;四大区域受经济发展水平、文化资源禀赋、政策导向影响,在企业角色强调程度、地区特色旅游发展以及国家级项目和竞争力方面存在地域差异。 展开更多
关键词 LDA主题模型 word2Vec 五年规划 文化政策 文本分析
下载PDF
基于Word2vec与注意力机制的情感分析研究
5
作者 任伟建 徐海杰 +3 位作者 康朝海 霍凤财 任璐 张永丰 《计算机与数字工程》 2024年第10期2991-2995,3147,共6页
针对传统情感分析模型对关键词特征抓取不准确、局部情感特征提取不全面造成分类效果差的问题,提出一种基于TW-BiLSTM-ATT情感分析模型。通过对TF-IDF改进,并与Word2vec结合,使权重特征融入词向量提升对关键信息的抓取能力;将词向量的... 针对传统情感分析模型对关键词特征抓取不准确、局部情感特征提取不全面造成分类效果差的问题,提出一种基于TW-BiLSTM-ATT情感分析模型。通过对TF-IDF改进,并与Word2vec结合,使权重特征融入词向量提升对关键信息的抓取能力;将词向量的位置特征融入到注意力机制中,使模型可以关注到目标词汇附近的词,进而更加全面地将情感特征提取出来。对比实验结果表明TW-BiLSTM-ATT模型在处理情感分析任务中分类效果好于同类模型。 展开更多
关键词 word2vec TF-IDF BiLSTM ATTENTION 情感分析
下载PDF
基于LDA和Word2Vec模型的学位论文评阅意见主题挖掘与分析
6
作者 王孟 苏进城 陈志德 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期41-51,共11页
选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将... 选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将评阅意见转化为主题分布向量;其次,结合Word2Vec模型将评阅意见的关键词转化为向量表达;最后,采用TextRank方法提取关键词,以揭示评阅专家的关注核心主题。实验结果表明,所提方法能为高校管理人员提供切实有效的分析工具,有助于他们更好地分析总结评阅意见,同时也为硕士研究生撰写高质量学位论文提供有益借鉴。 展开更多
关键词 硕士学位论文 自然语言处理 LDA模型 word2Vec模型 TextRank方法
下载PDF
英语word的字词之辨
7
作者 高斐 《海外英语》 2024年第20期65-67,共3页
将所有的English words统称为“英语单词”或“英语单字”都是片面的。这种字词不分的观念是导致中国学生学习和记忆英语单词困难的一个主要原因。英语和汉语一样,也应当区分字和词。英语中的词根(基本单词和黏附词根)应被视为“字”,... 将所有的English words统称为“英语单词”或“英语单字”都是片面的。这种字词不分的观念是导致中国学生学习和记忆英语单词困难的一个主要原因。英语和汉语一样,也应当区分字和词。英语中的词根(基本单词和黏附词根)应被视为“字”,而由词根派生出来的大量较复杂的单词才是“词”。将英语中少量的“字”与大量的“词”区分开,从认识英语词根开始,以字带词的方式学习,有助于快速识记大量英语词汇。 展开更多
关键词 英语单词 word
下载PDF
Python实现Excel文档转换到Word文档的自动化方法
8
作者 刘易 《电脑编程技巧与维护》 2024年第5期45-47,共3页
通过研究开发了一种基于Python语言,实现Excel数据自动转换成Word文档并实现排版功能的方法,为科研工作者、数据分析师或报告撰写人员提供一个方便快捷的工具,帮助他们更高效地完成Excel数据转换成Word并实现排版的任务。
关键词 PYTHON语言 Python-docx库 EXCEL文档 word排版
下载PDF
Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive 被引量:9
9
作者 Yunguang Ye Yayun Qi +3 位作者 Dachuan Shi Yu Sun Yichang Zhou Markus Hecht 《Railway Engineering Science》 2020年第2期160-183,共24页
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ... The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications. 展开更多
关键词 Wheel profile optimization Wear reduction Rotary-scaling fine-tuning Particle swarm optimization Kriging surrogate model
下载PDF
Railway wheel profile fine-tuning system for profile recommendation 被引量:3
10
作者 Yunguang Ye Jonas Vuitton +1 位作者 Yu Sun Markus Hecht 《Railway Engineering Science》 2021年第1期74-93,共20页
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one... This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively. 展开更多
关键词 Wheel profile fine-tuning system Optimization RECOMMENDATION WEAR Contact concentration index Multi-body dynamics simulation(MBS) Railway wheel
下载PDF
结合Word2vec和BiLSTM的民航非计划事件分析方法 被引量:1
11
作者 王捷 周迪 +1 位作者 左洪福 黄维 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期917-924,共8页
安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采... 安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。 展开更多
关键词 民航安全 文本分析 非计划事件 word2vec 双向长短期记忆(BiLSTM)神经网络
下载PDF
基于Word2Vec和决策树的故障定位技术 被引量:1
12
作者 王露露 陈军华 《上海师范大学学报(自然科学版中英文)》 2024年第2期223-227,共5页
利用Word2Vec方法对Java源代码进行深层语义编码,生成文件级和行级的语义向量,并将其用作输入数据来训练决策树模型,以实现精确的文件级别和行级别故障定位,优化故障检测过程,构建一个综合文件级别与行级别分析的高效故障定位框架.实验... 利用Word2Vec方法对Java源代码进行深层语义编码,生成文件级和行级的语义向量,并将其用作输入数据来训练决策树模型,以实现精确的文件级别和行级别故障定位,优化故障检测过程,构建一个综合文件级别与行级别分析的高效故障定位框架.实验结果表明:该模型在各项目中的故障定位准确率均高于83%. 展开更多
关键词 故障定位 语义表示 word2Vec 决策树
下载PDF
Fine-tuning of cortical progenitor proliferation by thalamic afferents
13
作者 Katrin Gerstmann Geraldine Zimmer 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期887-888,共2页
During cerebral cortical cortex neurogenesis two major types of progenitors generate a variety of morphologically and functionally diverse projection neurons destined for the different cortical layers in non-gyrified ... During cerebral cortical cortex neurogenesis two major types of progenitors generate a variety of morphologically and functionally diverse projection neurons destined for the different cortical layers in non-gyrified mice. Radial glia cells (RGCs) undergo mitosis in the cortical ventricular zone and exhibit an apical-basal cell polarity, whereas non-polar intermediate progenitor cells (IPCs) divide basally in the subventricular zone (Franco and Muller, 2013; Taverna et al., 2014). 展开更多
关键词 Eph fine-tuning of cortical progenitor proliferation by thalamic afferents
下载PDF
基于Fine-tune与DDC的变工况数控设备部件故障诊断
14
作者 王渤 杨越 +3 位作者 陆剑峰 余涛 颜鼎峰 徐煜昊 《机床与液压》 北大核心 2024年第22期22-29,共8页
针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用... 针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用源域数据集与CNN进行模型预训练;分别引入微调(Fine-tune)与深度域混淆(DDC)2种迁移学习方式改进模型;最终实现了基于Fine-tune与基于DDC的故障诊断模型的构建。以轴承与数控铣刀2种部件为例进行实验验证,结果证明:Fine-tune与DDC均可以有效提高数控设备部件的故障诊断准确率,其中Fine-tune的泛化能力强,而DDC训练耗时更短且在复杂环境下的性能更优。 展开更多
关键词 故障诊断 变工况 卷积神经网络 fine-tune 深度域混淆(DDC)
下载PDF
基于LDA-Word2vec的图书情报领域机器学习研究主题演化与热点主题识别 被引量:7
15
作者 胡泽文 韩雅蓉 王梦雅 《现代情报》 CSSCI 北大核心 2024年第4期154-167,共14页
[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以... [目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。 展开更多
关键词 机器学习 LDA模型 word2vec 主题演化 热点主题 主题影响力 主题关注度
下载PDF
New approach to assess sperm DNA fragmentation dynamics: Fine-tuning mathematical models
16
作者 Isabel Ortiz Jesus Dorado +4 位作者 Jane Morrell Jaime Gosalvez Francisco Crespo Juan M.Jimenez Manuel Hidalgo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第3期592-600,共9页
Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to ... Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to select those donkey sperm more resistant to DNA fragmentation after thawing. Previous studies have shown that to elucidate the latent damage of the DNA molecule, sDF should be assessed dynamically, where the rate of fragmentation between treatments indicates how resistant the DNA is to iatrogenic damage. The rate of fragmentation is calculated using the slope of a linear regression equation. However, it has not been studied if s DF dynamics fit this model. The objectives of this study were to evaluate the effect of different after-thawing centrifugation protocols on sperm DNA fragmentation and elucidate the most accurate mathematical model(linear regression, exponential or polynomial) for DNA fragmentation over time in frozen-thawed donkey semen.Results: After submitting post-thaw semen samples to no centrifugation(UDC), sperm washing(SW) or single layer centrifugation(SLC) protocols, sD F values after 6 h of incubation were significantly lower in SLC samples than in SW or UDC.Coefficient of determination(R-2) values were significantly higher for a second order polynomial model than for linear or exponential. The highest values for acceleration of fragmentation(aSDF) were obtained for SW, fol owed by SLC and UDC.Conclusion: SLC after thawing seems to preserve longer DNA longevity in comparison to UDC and SW. Moreover,the fine-tuning of models has shown that sDF dynamics in frozen-thawed donkey semen fit a second order polynomial model, which implies that fragmentation rate is not constant and fragmentation acceleration must be taken into account to elucidate hidden damage in the DNA molecule. 展开更多
关键词 Colloid centrifugation Dynamics fine-tuning Mathematical models Sperm DNA fragmentation
下载PDF
基于Word VBA辅助技术文件编制的数字化协同建设的探索
17
作者 赵静 赵方鑫 《计算机应用文摘》 2024年第6期82-84,共3页
文件编制是设计研发人员日常工作的重要组成部分,其中技术文件的编制涉及大量文件结构和起草规则的应用,基于相关标准中关于文件的编写要求,文章利用WordVBA编程技术辅助技术文件编写工作中的格式编排,实现了Word文档标准格式技术文件... 文件编制是设计研发人员日常工作的重要组成部分,其中技术文件的编制涉及大量文件结构和起草规则的应用,基于相关标准中关于文件的编写要求,文章利用WordVBA编程技术辅助技术文件编写工作中的格式编排,实现了Word文档标准格式技术文件的自动化编制,从而保障文件编制符合标准格式要求,有效提高了工作效率。 展开更多
关键词 技术文件 word VBA编程 自动化
下载PDF
基于LSTM+Word2vec的微博评论情感分析 被引量:1
18
作者 王剑辉 闫芳序 《沈阳师范大学学报(自然科学版)》 CAS 2024年第2期138-144,共7页
微博作为当今热门的社交平台,其中蕴含着许多具有强烈主观性的用户评论文本。为挖掘微博评论文本中潜在的信息,针对传统的情感分析模型中存在的语义缺失以及过度依赖人工标注等问题,提出一种基于LSTM+Word2vec的深度学习情感分析模型。... 微博作为当今热门的社交平台,其中蕴含着许多具有强烈主观性的用户评论文本。为挖掘微博评论文本中潜在的信息,针对传统的情感分析模型中存在的语义缺失以及过度依赖人工标注等问题,提出一种基于LSTM+Word2vec的深度学习情感分析模型。采用Word2vec中的连续词袋模型(continuous bag of words,CBOW),利用语境的上下文结构及语义关系将每个词语映射为向量空间,增强词向量之间的稠密度;采用长短时记忆神经网络模型实现对文本上下文序列的线性抓取,最后输出分类预测的结果。实验结果的准确率可达95.9%,通过对照实验得到情感词典、RNN、SVM三种模型的准确率分别为52.3%、92.7%、85.7%,对比发现基于LSTM+Word2vec的深度学习情感分析模型的准确率更高,具有一定的鲁棒性和泛化性,对用户个性化推送和网络舆情监控具有重要意义。 展开更多
关键词 情感分析 word2vec 长短时记忆神经网络 社交平台 微博
下载PDF
Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10
19
作者 Trong Thua Huynh Hoang Thanh Nguyen Du Thang Phu 《Computers, Materials & Continua》 SCIE EI 2024年第11期2281-2298,共18页
In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural N... In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural Network),YOLO(You Only Look Once),and their variants have demonstrated superiority in quickly detecting objects from images and videos,creating new opportunities to enhance automatic and efficient fire detection.The YOLO model,especially newer versions like YOLOv10,stands out for its fast processing capability,making it suitable for low-latency applications.However,when applied to real-world datasets,the accuracy of fire prediction is still not high.This study improves the accuracy of YOLOv10 for real-time applications through model fine-tuning techniques and data augmentation.The core work of the research involves creating a diverse fire image dataset specifically suited for fire detection applications in buildings and factories,freezing the initial layers of the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention mechanism and employing the Stochastic Gradient Descent(SGD)with a momentum optimization algorithm to enhance accuracy while ensuring real-time fire detection.Experimental results demonstrate the effectiveness of the proposed fire prediction approach,where the YOLOv10 small model exhibits the best balance compared to other YOLO family models such as nano,medium,and balanced.Additionally,the study provides an experimental evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline,YOLOv8 and Faster R-CNN based on two criteria:accuracy and prediction time. 展开更多
关键词 Fire detection ACCURACY prediction time fine-tuning real-time YOLOv10 Faster R-CNN
下载PDF
关于Word2Vec文本分类效果若干影响因素的分析 被引量:4
20
作者 谢庆恒 《现代信息科技》 2024年第1期125-129,共5页
Word2Vec向量模型参数众多,在不同情景下分类效果不一,分析其影响因素很有必要。从Word2Vec模型基本原理出发,分析讨论了预训练语料、词向量预训练参数以及分类模型参数三大因素对模型分类效果的影响。结果表明限定域预料效果好于广域预... Word2Vec向量模型参数众多,在不同情景下分类效果不一,分析其影响因素很有必要。从Word2Vec模型基本原理出发,分析讨论了预训练语料、词向量预训练参数以及分类模型参数三大因素对模型分类效果的影响。结果表明限定域预料效果好于广域预料;预训练参数中向量维度越大,效果越好,窗口大小存在最优值,分类算法影响不大;分类模型参数中学习率、激活函数、批次大小对模型分类效果影响较大,训练轮次相对较小。 展开更多
关键词 word2Vec 文本分类 模型效果 影响因素
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部