按功能或问题域划分,商品属性抽取(product feature mining)在限定领域的对话系统中属于口语语言理解(spoken language understanding,SLU)的范畴。商品属性抽取任务只关注自然文本中描述商品属性的特定部分,它是细粒度观点抽取(fine-gr...按功能或问题域划分,商品属性抽取(product feature mining)在限定领域的对话系统中属于口语语言理解(spoken language understanding,SLU)的范畴。商品属性抽取任务只关注自然文本中描述商品属性的特定部分,它是细粒度观点抽取(fine-grained opinion mining)的一个重要的子任务。现有的商品属性抽取技术主要建立在商品的评论语料上,该文以手机导购对话系统为背景,将商品属性抽取应用到整个对话过程中,增强对话系统应答的针对性。使用基于CBOW(continuous bag of words)语言模型的word2vector(W2V)对词汇的语义层面建模,提出一个针对口语对话的指数型变长静态窗口特征表达框架,捕捉不同距离词语组合的重要特征,使用卷积神经网络(convolutional neural network,CNN)结合词汇的语义和上下文层面对口语对话语料中的商品属性进行抽取。词嵌入模型给出了当前词和所给定的属性类别是否存在相关性的证据,而所提出的特征表达框架则是为了解决一词多义的问题。实验结果表明,该方法取得了优于研究进展中方法的商品属性识别效果。展开更多
Background:The type Ⅲ secreted effectors(T3SEs)are one of the indispensable proteins in the growth and reproduction of Gram-negative bacteria.In particular,the pathogenesis of Gram-negative bacteria depends on the ty...Background:The type Ⅲ secreted effectors(T3SEs)are one of the indispensable proteins in the growth and reproduction of Gram-negative bacteria.In particular,the pathogenesis of Gram-negative bacteria depends on the type Ⅲ secreted effectors,and by injecting T3SEs into a host cell,the host cell's immunity can be destroyed.The high diversity of T3SE sequences and the lack of defined secretion signals make it difficult to identify and predict.Moreover,the related study of the pathological system associated with T3SE remains a hot topic in bioinformatics.Some computational tools have been developed to meet the growing demand for the recognition of T3SEs and the studies of type Ⅲ secretion systems(T3SS).Although these tools can help biological experiments in certain procedures,there is still room for improvement,even for the current best model,as the existing methods adopt handdesigned feature and traditional machine learning methods.Methods:In this study,we propose a powerful predictor based on deep learning methods,called WEDeepT3.Our work consists mainly of three key steps.First,we train word embedding vectors for protein sequences in a large-scale amino acid sequence database.Second,we combine the word vectors with traditional features extracted from protein sequences,like PSSM,to construct a more comprehensive feature representation.Finally,we construct a deep neural network model in the prediction of type Ⅲ secreted effectors.Results:The feature representation of WEDeepT3 consists of both word embedding and position-specific features.Working together with convolutional neural networks,the new model achieves superior performance to the state-ofthe-art methods,demonstrating the effectiveness of the new feature representation and the powerful learning ability of deep models.Conclusion:WEDeepT3 exploits both semantic information of Ar-mer fragments and evolutional information of protein sequences to accurately difYerentiate between T3SEs and non-T3SEs.WEDeepT3 is available at bcmi.sjtu.edu.cn/~yangyang/WEDeepT3.html.展开更多
文摘按功能或问题域划分,商品属性抽取(product feature mining)在限定领域的对话系统中属于口语语言理解(spoken language understanding,SLU)的范畴。商品属性抽取任务只关注自然文本中描述商品属性的特定部分,它是细粒度观点抽取(fine-grained opinion mining)的一个重要的子任务。现有的商品属性抽取技术主要建立在商品的评论语料上,该文以手机导购对话系统为背景,将商品属性抽取应用到整个对话过程中,增强对话系统应答的针对性。使用基于CBOW(continuous bag of words)语言模型的word2vector(W2V)对词汇的语义层面建模,提出一个针对口语对话的指数型变长静态窗口特征表达框架,捕捉不同距离词语组合的重要特征,使用卷积神经网络(convolutional neural network,CNN)结合词汇的语义和上下文层面对口语对话语料中的商品属性进行抽取。词嵌入模型给出了当前词和所给定的属性类别是否存在相关性的证据,而所提出的特征表达框架则是为了解决一词多义的问题。实验结果表明,该方法取得了优于研究进展中方法的商品属性识别效果。
基金supported by the National Natural Science Foundation of China(No.61972251).
文摘Background:The type Ⅲ secreted effectors(T3SEs)are one of the indispensable proteins in the growth and reproduction of Gram-negative bacteria.In particular,the pathogenesis of Gram-negative bacteria depends on the type Ⅲ secreted effectors,and by injecting T3SEs into a host cell,the host cell's immunity can be destroyed.The high diversity of T3SE sequences and the lack of defined secretion signals make it difficult to identify and predict.Moreover,the related study of the pathological system associated with T3SE remains a hot topic in bioinformatics.Some computational tools have been developed to meet the growing demand for the recognition of T3SEs and the studies of type Ⅲ secretion systems(T3SS).Although these tools can help biological experiments in certain procedures,there is still room for improvement,even for the current best model,as the existing methods adopt handdesigned feature and traditional machine learning methods.Methods:In this study,we propose a powerful predictor based on deep learning methods,called WEDeepT3.Our work consists mainly of three key steps.First,we train word embedding vectors for protein sequences in a large-scale amino acid sequence database.Second,we combine the word vectors with traditional features extracted from protein sequences,like PSSM,to construct a more comprehensive feature representation.Finally,we construct a deep neural network model in the prediction of type Ⅲ secreted effectors.Results:The feature representation of WEDeepT3 consists of both word embedding and position-specific features.Working together with convolutional neural networks,the new model achieves superior performance to the state-ofthe-art methods,demonstrating the effectiveness of the new feature representation and the powerful learning ability of deep models.Conclusion:WEDeepT3 exploits both semantic information of Ar-mer fragments and evolutional information of protein sequences to accurately difYerentiate between T3SEs and non-T3SEs.WEDeepT3 is available at bcmi.sjtu.edu.cn/~yangyang/WEDeepT3.html.