this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)...this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.展开更多
In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of wh...For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.展开更多
We investigated the use of diagrams in multiplicative comparison word problems. The diagrams have been considered as one of the effective heuristic strategies or solving math problems. However, how students use during...We investigated the use of diagrams in multiplicative comparison word problems. The diagrams have been considered as one of the effective heuristic strategies or solving math problems. However, how students use during their school and the degree development that shows in their performance when applied to specific fields of knowledge is a task to be elucidated. We place our study in the school stage in which it makes the transition from arithmetic to algebra and arithmetic problems we focus on in the underlying multiplicative comparison scheme. In this paper, we analyzed the responses of high school students to the translation of multiplicative comparison word problems to representation graphs. We have used the responses of 12 -14 year old students (freshman year of secondary school) to represent multiplicative comparison word problems to identify and categorize the students responses, which allowed us identify categories for each type of representation and hypothesize priority order and subordination between the categories. Results show that students are not familiar with building diagrams that integrate existing relations in word problems. Most of the students do not use all the quantitative information contained in the word problem, therefore draw diagrams referring to the subject or context of the problem without relating to the data in it. We describe in detail the quantitative diagram types produced by these students. We have identified four kinds of quantitative diagrams that the students used to represent the multiplicative comparison problems with inconsistent statements, and these diagrams correspond to the four strategies for tackling the construction of the diagram.展开更多
Math word problem uses a real word story to present basic arithmetic operations using textual narration. It is used to develop student’s comprehension skill in conjunction with the ability to generate a solution that...Math word problem uses a real word story to present basic arithmetic operations using textual narration. It is used to develop student’s comprehension skill in conjunction with the ability to generate a solution that agrees with the story given in the problem. To master math word problem solving, students need to be given fresh and enormous amount of problems, which normal textbooks as well as teachers fail to provide most of the time. To fill the gap, a few research works have been proposed on techniques to automatically generate math word problems and equations mainly for English speaking community. Amharic is a Semitic language spoken by more than hundred million Ethiopians and is a language of instruction in elementary schools in Ethiopia. And yet it belongs to one of a less resourced language in the field of linguistics and natural language processing (NLP). Hence, in this paper, a strategy for automatic generation of Amharic Math Word (AMW) problem and equation is proposed, which is a first attempt to introduce the use template based shallow NLP approach to generate math word problem for Amharic language as a step towards enabling comprehension and learning problem solving in mathematics for primary school students. The proposed novel technique accepts a sample AMW problem as user input to form a template. A template provides AMW problem with placeholders, type of problem and equation template. It is used as a pattern to generate semantically equivalent AMW problems with their equations. To validate the reality of the proposed approach, a prototype was developed and used as a testing platform. Experimental results have shown 93.84% overall efficiency on the core task of forming templates from a given corpus containing AMW problems collected from elementary school mathematics textbooks and other school worksheets. Human judges have also found generated AMW problem and equation as solvable as the textbook problems.展开更多
Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This pap...Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing Deep Implicit Relations(DIR-AWP),such as entailing commonsense or subject-domain knowledge involved in the problem-solving process.This paper proposes to take three steps to solve DIR-AWPs,in which the first three steps are used to conduct the qualia inference process.The first step uses the prepared set of qualia-quantity models to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic(S2)method from the given problem.The second step adds missing entities and deep implicit relations in order using the identified qualia scenes and the qualia-quantity models,respectively.The third step distills the relations for solving the given problem by pruning the spare branches of the qualia dependency graph of all the acquired relations.The research contributes to the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning abilities.The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline algorithms in solving AWPs requiring deep implicit relations.展开更多
In primary school maths, CIRCLE is one of the most important units. Some of the students would think it would be okay to be able to understand the relationship between the diameter or the radius and the circumference ...In primary school maths, CIRCLE is one of the most important units. Some of the students would think it would be okay to be able to understand the relationship between the diameter or the radius and the circumference or the area of a circle.Here is a word problem:Choose the correct option A, B or C.Inthesquare,thereisaquartercircleandasmallcircle.展开更多
基金The National Natural Science Foundation of China(11701373)The Shanghai Sailing Program(17YF1413800)。
文摘this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.
文摘In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
基金Supported by the National Natural Science Foundation of China(11561020,11371224)Supported by the Science and Technology Plan of the Gansu Province(145RJZG227)
文摘For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.
文摘We investigated the use of diagrams in multiplicative comparison word problems. The diagrams have been considered as one of the effective heuristic strategies or solving math problems. However, how students use during their school and the degree development that shows in their performance when applied to specific fields of knowledge is a task to be elucidated. We place our study in the school stage in which it makes the transition from arithmetic to algebra and arithmetic problems we focus on in the underlying multiplicative comparison scheme. In this paper, we analyzed the responses of high school students to the translation of multiplicative comparison word problems to representation graphs. We have used the responses of 12 -14 year old students (freshman year of secondary school) to represent multiplicative comparison word problems to identify and categorize the students responses, which allowed us identify categories for each type of representation and hypothesize priority order and subordination between the categories. Results show that students are not familiar with building diagrams that integrate existing relations in word problems. Most of the students do not use all the quantitative information contained in the word problem, therefore draw diagrams referring to the subject or context of the problem without relating to the data in it. We describe in detail the quantitative diagram types produced by these students. We have identified four kinds of quantitative diagrams that the students used to represent the multiplicative comparison problems with inconsistent statements, and these diagrams correspond to the four strategies for tackling the construction of the diagram.
文摘Math word problem uses a real word story to present basic arithmetic operations using textual narration. It is used to develop student’s comprehension skill in conjunction with the ability to generate a solution that agrees with the story given in the problem. To master math word problem solving, students need to be given fresh and enormous amount of problems, which normal textbooks as well as teachers fail to provide most of the time. To fill the gap, a few research works have been proposed on techniques to automatically generate math word problems and equations mainly for English speaking community. Amharic is a Semitic language spoken by more than hundred million Ethiopians and is a language of instruction in elementary schools in Ethiopia. And yet it belongs to one of a less resourced language in the field of linguistics and natural language processing (NLP). Hence, in this paper, a strategy for automatic generation of Amharic Math Word (AMW) problem and equation is proposed, which is a first attempt to introduce the use template based shallow NLP approach to generate math word problem for Amharic language as a step towards enabling comprehension and learning problem solving in mathematics for primary school students. The proposed novel technique accepts a sample AMW problem as user input to form a template. A template provides AMW problem with placeholders, type of problem and equation template. It is used as a pattern to generate semantically equivalent AMW problems with their equations. To validate the reality of the proposed approach, a prototype was developed and used as a testing platform. Experimental results have shown 93.84% overall efficiency on the core task of forming templates from a given corpus containing AMW problems collected from elementary school mathematics textbooks and other school worksheets. Human judges have also found generated AMW problem and equation as solvable as the textbook problems.
基金The National Natural Science Foundation of China(No.61977029)supported the worksupported partly by Nurturing Program for Doctoral Dissertations at Central China Normal University(No.2022YBZZ028).
文摘Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing Deep Implicit Relations(DIR-AWP),such as entailing commonsense or subject-domain knowledge involved in the problem-solving process.This paper proposes to take three steps to solve DIR-AWPs,in which the first three steps are used to conduct the qualia inference process.The first step uses the prepared set of qualia-quantity models to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic(S2)method from the given problem.The second step adds missing entities and deep implicit relations in order using the identified qualia scenes and the qualia-quantity models,respectively.The third step distills the relations for solving the given problem by pruning the spare branches of the qualia dependency graph of all the acquired relations.The research contributes to the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning abilities.The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline algorithms in solving AWPs requiring deep implicit relations.
文摘In primary school maths, CIRCLE is one of the most important units. Some of the students would think it would be okay to be able to understand the relationship between the diameter or the radius and the circumference or the area of a circle.Here is a word problem:Choose the correct option A, B or C.Inthesquare,thereisaquartercircleandasmallcircle.