The adaptive coupled synchronization method for non-autonomous systems is proposed. This method can avoid estimating the value of coupling coefficient. Under the uniform Lipschitz assumption, we derive the asymptotica...The adaptive coupled synchronization method for non-autonomous systems is proposed. This method can avoid estimating the value of coupling coefficient. Under the uniform Lipschitz assumption, we derive the asymptotical synchronization for a general coupling ring network with N identical non-autonomous systems~ even when N is large enough. Strict theoretical proofs are given. Numerical simulations illustrate the effectiveness of the present method.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No10372054)the Science Foundation of Jiangnan University,China(Grant No000408)
文摘The adaptive coupled synchronization method for non-autonomous systems is proposed. This method can avoid estimating the value of coupling coefficient. Under the uniform Lipschitz assumption, we derive the asymptotical synchronization for a general coupling ring network with N identical non-autonomous systems~ even when N is large enough. Strict theoretical proofs are given. Numerical simulations illustrate the effectiveness of the present method.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.