This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,th...This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.展开更多
This paper presents the differences and relations between background knowledge and domain theories in learning systems. The roles they play during learning procedures are discussed. It is emphasized that background k...This paper presents the differences and relations between background knowledge and domain theories in learning systems. The roles they play during learning procedures are discussed. It is emphasized that background knowledge plays an important role in enhancing the ability of a learning system. An explanation based learning system with domain theory in primary knowledge base and background knowledge in secondary knowledge base is introduced as an example. It shows how background knowledge can be used to solve some of the problems caused by incomplete domain theory in an explanation based learning system. The system can accomplish knowledge level learning through purely deductive approach. At last the acquisition of background knowledge is briefly discussed.展开更多
The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are...The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.展开更多
The aim of this innovation project is toconduct a pilot by employing cooperative learning strategies, peer assessment and self-assessment in the process of teaching cultural background in College English Integrated Co...The aim of this innovation project is toconduct a pilot by employing cooperative learning strategies, peer assessment and self-assessment in the process of teaching cultural background in College English Integrated Course to change teachers' role as a dominator as that to explore a feasible yet effective way which will help students to learn the cultural background and obtained some cognitive progress in performance and achievements. According to the findings obtained from the survey, we can see that by employing of the cooperative learning strategy, students' enthusiasm, participation and learning effectiveness have been greatly enhanced. What's more, the application of cooperative learning strategy in teaching cultural background not only motivated students, enhanced students' critical thinking but also reduced teachers' heavy workload. It is a win-win situation both for teacher and the students.展开更多
This paper tries to summarize some main schools 0f teaching methodologies abroad and some main learning theories abroad. From this paper, we can know the main learning theories, the basic theories of them and the lead...This paper tries to summarize some main schools 0f teaching methodologies abroad and some main learning theories abroad. From this paper, we can know the main learning theories, the basic theories of them and the leading figures. It can help us understand the characteristics of each school of the teaching methodologies and learning theories.展开更多
A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence...A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.展开更多
AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a...AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data.展开更多
An exponential growth in advanced technologies has resulted in the exploration of Ocean spaces.It has paved the way for new opportunities that can address questions relevant to diversity,uniqueness,and difficulty of m...An exponential growth in advanced technologies has resulted in the exploration of Ocean spaces.It has paved the way for new opportunities that can address questions relevant to diversity,uniqueness,and difficulty of marine life.Underwater Wireless Sensor Networks(UWSNs)are widely used to leverage such opportunities while these networks include a set of vehicles and sensors to monitor the environmental conditions.In this scenario,it is fascinating to design an automated fish detection technique with the help of underwater videos and computer vision techniques so as to estimate and monitor fish biomass in water bodies.Several models have been developed earlier for fish detection.However,they lack robustness to accommodate considerable differences in scenes owing to poor luminosity,fish orientation,structure of seabed,aquatic plantmovement in the background and distinctive shapes and texture of fishes from different genus.With this motivation,the current research article introduces an Intelligent Deep Learning based Automated Fish Detection model for UWSN,named IDLAFD-UWSN model.The presented IDLAFD-UWSN model aims at automatic detection of fishes from underwater videos,particularly in blurred and crowded environments.IDLAFD-UWSN model makes use of Mask Region Convolutional Neural Network(Mask RCNN)with Capsule Network as a baseline model for fish detection.Besides,in order to train Mask RCNN,background subtraction process using GaussianMixtureModel(GMM)model is applied.This model makes use of motion details of fishes in video which consequently integrates the outcome with actual image for the generation of fish-dependent candidate regions.Finally,Wavelet Kernel Extreme Learning Machine(WKELM)model is utilized as a classifier model.The performance of the proposed IDLAFD-UWSN model was tested against benchmark underwater video dataset and the experimental results achieved by IDLAFD-UWSN model were promising in comparison with other state-of-the-art methods under different aspects with the maximum accuracy of 98%and 97%on the applied blurred and crowded datasets respectively.展开更多
Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density da...Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density data from Van Allen Probes between September 25,2012 and August 30,2019.This MLED model is a physics-based nonlinear network that employs fundamental physical principles to describe variations of electron density.It predicts the plasmapause location under different geomagnetic conditions,and models separately the electron densities of the plasmasphere and of the trough.We train the model using gradient descent and backpropagation algorithms,which are widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments.The model gives explicit expressions with few parameters and describes the associations of electron density with geomagnetic activity,solar cycle,and seasonal effects.Under various geomagnetic conditions,the electron densities calculated by this model agree well with empirical observations and provide a good description of plasmapause movement.This MLED model,which can be easily incorporated into previously developed radiation belt models,promises to be very helpful in modeling and improving forecasting of radiation belt electron dynamics.展开更多
文摘This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.
文摘This paper presents the differences and relations between background knowledge and domain theories in learning systems. The roles they play during learning procedures are discussed. It is emphasized that background knowledge plays an important role in enhancing the ability of a learning system. An explanation based learning system with domain theory in primary knowledge base and background knowledge in secondary knowledge base is introduced as an example. It shows how background knowledge can be used to solve some of the problems caused by incomplete domain theory in an explanation based learning system. The system can accomplish knowledge level learning through purely deductive approach. At last the acquisition of background knowledge is briefly discussed.
基金the Doctorate Foundation of the Engineering College, Air Force Engineering University.
文摘The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.
文摘The aim of this innovation project is toconduct a pilot by employing cooperative learning strategies, peer assessment and self-assessment in the process of teaching cultural background in College English Integrated Course to change teachers' role as a dominator as that to explore a feasible yet effective way which will help students to learn the cultural background and obtained some cognitive progress in performance and achievements. According to the findings obtained from the survey, we can see that by employing of the cooperative learning strategy, students' enthusiasm, participation and learning effectiveness have been greatly enhanced. What's more, the application of cooperative learning strategy in teaching cultural background not only motivated students, enhanced students' critical thinking but also reduced teachers' heavy workload. It is a win-win situation both for teacher and the students.
文摘This paper tries to summarize some main schools 0f teaching methodologies abroad and some main learning theories abroad. From this paper, we can know the main learning theories, the basic theories of them and the leading figures. It can help us understand the characteristics of each school of the teaching methodologies and learning theories.
文摘A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.
基金Supported by National Institute of General Medical Sciences of the National Institutes of Health,No.R01GM100387
文摘AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 1/53/42),www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘An exponential growth in advanced technologies has resulted in the exploration of Ocean spaces.It has paved the way for new opportunities that can address questions relevant to diversity,uniqueness,and difficulty of marine life.Underwater Wireless Sensor Networks(UWSNs)are widely used to leverage such opportunities while these networks include a set of vehicles and sensors to monitor the environmental conditions.In this scenario,it is fascinating to design an automated fish detection technique with the help of underwater videos and computer vision techniques so as to estimate and monitor fish biomass in water bodies.Several models have been developed earlier for fish detection.However,they lack robustness to accommodate considerable differences in scenes owing to poor luminosity,fish orientation,structure of seabed,aquatic plantmovement in the background and distinctive shapes and texture of fishes from different genus.With this motivation,the current research article introduces an Intelligent Deep Learning based Automated Fish Detection model for UWSN,named IDLAFD-UWSN model.The presented IDLAFD-UWSN model aims at automatic detection of fishes from underwater videos,particularly in blurred and crowded environments.IDLAFD-UWSN model makes use of Mask Region Convolutional Neural Network(Mask RCNN)with Capsule Network as a baseline model for fish detection.Besides,in order to train Mask RCNN,background subtraction process using GaussianMixtureModel(GMM)model is applied.This model makes use of motion details of fishes in video which consequently integrates the outcome with actual image for the generation of fish-dependent candidate regions.Finally,Wavelet Kernel Extreme Learning Machine(WKELM)model is utilized as a classifier model.The performance of the proposed IDLAFD-UWSN model was tested against benchmark underwater video dataset and the experimental results achieved by IDLAFD-UWSN model were promising in comparison with other state-of-the-art methods under different aspects with the maximum accuracy of 98%and 97%on the applied blurred and crowded datasets respectively.
基金This work is supported by the National Natural Science Foundation of China grants 42074198,41774194,41974212 and 42004141Natural Science Foundation of Hunan Province 2021JJ20010+1 种基金Science and Technology Innovation Program of Hunan Province 2021RC3098Foundation of Education Bureau of Hunan Province for Distinguished Young Scientists 20B004.
文摘Plasma density is an important factor in determining wave-particle interactions in the magnetosphere.We develop a machine-learning-based electron density(MLED)model in the inner magnetosphere using electron density data from Van Allen Probes between September 25,2012 and August 30,2019.This MLED model is a physics-based nonlinear network that employs fundamental physical principles to describe variations of electron density.It predicts the plasmapause location under different geomagnetic conditions,and models separately the electron densities of the plasmasphere and of the trough.We train the model using gradient descent and backpropagation algorithms,which are widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments.The model gives explicit expressions with few parameters and describes the associations of electron density with geomagnetic activity,solar cycle,and seasonal effects.Under various geomagnetic conditions,the electron densities calculated by this model agree well with empirical observations and provide a good description of plasmapause movement.This MLED model,which can be easily incorporated into previously developed radiation belt models,promises to be very helpful in modeling and improving forecasting of radiation belt electron dynamics.