期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vapor-Liquid Equilibrium Prediction of Ammonia-Ionic Liquid Working Pairs of Absorption Cycle Using UNIFAC Model 被引量:4
1
作者 孙光明 黄维佳 +2 位作者 郑丹星 董丽 武向红 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第1期72-78,共7页
On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-d... On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively. 展开更多
关键词 absorption cycle working pairs vapor-liquid equilibrium UNIFAC model AMMONIA ionic liquid
下载PDF
Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power 被引量:1
2
作者 郭美茹 朱启的 +2 位作者 孙志强 周天 周孑民 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1548-1553,共6页
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p... To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K. 展开更多
关键词 organic Rankine cycle(ORC) working fluid selection net power heat exchange area
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部