On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-d...On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.展开更多
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p...To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.展开更多
基金Supported by the National Natural Science Foundation of China(50890184,51276010)the National Basic Research Program of China(2010CB227304)
文摘On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.
基金Projects(U0937604,50876116)supported by the National Natural Science Foundation of ChinaProjects(2010QZZD0107,2014zzts192)supported by the Fundamental Research Funds for the Central Universities of China
文摘To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.