期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
1
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration Cycle Power Cycle System Performance Transcritical CO2 Cycles working fluid
下载PDF
Measurement and Prediction of Vapor Pressure for H20 + CHaOH] C2HsOH + [BMIM][DBP] Ternary Working Fluids 被引量:4
2
作者 张晓冬 胡大鹏 赵宗昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期886-893,共8页
The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different ... The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs. 展开更多
关键词 ionic liquid ternary working fluids vapor pressure NRTL model absorption refrigeration
下载PDF
Evaluation of working fluids for organic Rankine cycles using group-contribution methods and second-law-based models 被引量:1
3
作者 MA Wei-wu WANG Lin +1 位作者 LIU Tao LI Min 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2234-2243,共10页
The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Ra... The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods. 展开更多
关键词 organic Rankine cycles (ORCs) group contribution methods working fluids property estimation computer-aided molecular design
下载PDF
Analysis on optimal working fluid flowrate and unstable power generation for miniaturized ORC systems 被引量:1
4
作者 刘克涛 朱家玲 +1 位作者 胡开永 吴秀杰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1224-1231,共8页
For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va... For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution. 展开更多
关键词 organic Rankine cycle (ORC) plate heat exchanger optimal working fluid flowrate unstable power generation
下载PDF
Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power 被引量:1
5
作者 郭美茹 朱启的 +2 位作者 孙志强 周天 周孑民 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1548-1553,共6页
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p... To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K. 展开更多
关键词 organic Rankine cycle(ORC) working fluid selection net power heat exchange area
下载PDF
Implication of Water-Rock Interaction for Enhancing Shale Gas Production
6
作者 Qiuyang Cheng Lijun You +3 位作者 Cheng Chang Weiyang Xie Haoran Hu Xingchen Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1441-1462,共22页
Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters t... Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network. 展开更多
关键词 Shale gas reservoir hydraulic fracturing working fluid water-rock interaction OXIDATION shut-in production system
下载PDF
Energy,exergy,and economic analysis of compression-absorption cascade refrigeration cycle using different working fluids
7
作者 Yuhan Du Chenhan Chi Xiaopo Wang 《Energy Storage and Saving》 2024年第2期87-95,共9页
Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization... Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization waste heat.In this work,the performance of the CACRC system was investigated using 16 refrigerants in the vapor compression section and H_(2)O-LiBr in the absorption refrigeration section.Energy,exergy and economic analysis of the CACRC system were carried out and the results were compared.Results show that RE170/H_(2)O-LiBr presents the better coefficient of performance and exergy efficiency amongst all the studied fluids.In addition,the economic optimization,multi-objective optimization,and thermodynamic optimization of the CACRC system based on the RE170/H_(2)O-LiBr working fluid were also carried out. 展开更多
关键词 Compression-absorption cascade refrigeration cycle working fluids Economic analysis Multi-objective optimization
原文传递
MY WORK IN THE FIELD OF FLUID MECHANICS
8
作者 Zhou Heng(Tianjin University) 《Bulletin of the Chinese Academy of Sciences》 1996年第1期69-69,共1页
I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was ... I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was in cybernetics, resulting in the publication of the first Chinese paper concerning optimal control. After 1963, I worked on the theory of hydrodynamic stability. My explorative thrust is at the eigenvalues of the Orr Sommerfeld Equation,a non-self adjoint problem in 展开更多
关键词 MY WORK IN THE FIELD OF fluid MECHANICS
下载PDF
CFD-Based Optimization of a Diesel Engine Waste Heat Recycle System
9
作者 Da Li Guodong Zhang +2 位作者 Ke Sun Shuzhan Bai Guoxiang Li 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1479-1493,共15页
A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these ... A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight. 展开更多
关键词 Tube-fin heat exchanger heat exchanging core organic rankine cycle working fluid
下载PDF
Working fluid selection based on critical temperature and water temperature in organic Rankine cycle 被引量:8
10
作者 LI XinGuo ZHAO WenJing +1 位作者 LIN DieDie ZHU Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第1期138-146,共9页
This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle(ORC).The variation and tendency... This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle(ORC).The variation and tendency of the net power output with water temperature and correlated with the critical temperature of working fluids is investigated.Four characteristic curves of the net power output at particular water temperature(Tw_turn,Tw_app,Tw_tran and Tw_up)and their temperature difference(△T_turn=Tw_turn△Tcr,△T_app=Tw_app△Tcr)are obtained to evaluate the working fluids.The curve at"applicable water temperature(Tw_app)"is a demarcation to differentiate the net power output from low to high.The"upper water temperature(Tw_up)"is an upper limit of the water temperature to yield the higher net power output.A relation is built that the suitable water temperature is within the Tw_app and Tw_up of the working fluid. 展开更多
关键词 organic Rankine cycle(ORC) thermal performance working fluid selection critical temperature of working fluid water temperature
原文传递
Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression 被引量:8
11
作者 Bin HU Di WU +1 位作者 L.W. WANG R.Z. WANG 《Frontiers in Energy》 SCIE CSCD 2017年第4期493-502,共10页
In this paper, the simulation approach and exergy analysis of multi-stage compression high tempera- ture heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage ... In this paper, the simulation approach and exergy analysis of multi-stage compression high tempera- ture heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage compression cycles are analyzed to compare the system performance with 120℃ pressurized hot water supply based upon waste heat recovery. The exergy destruction ratios of each component for different stage compression systems are compared. The results show that the exergy loss ratios of the compressor are bigger than that of the evaporator and the condenser for the single-stage compres- sion system. The multi-stage compression system has better energy and exergy etticiencies with the increase of compression stage number. Compared with the single- stage compression system, the coefficient of performance (COP) improvements of the two-stage and three-stage compression system are 9.1% and 14.6%, respectively. When the waste heat source temperature is 60℃, the exergy efficiencies increase about 6.9% and 11.8% for the two-stage and three-stage compression system respec- tively. 展开更多
关键词 multi-stage compression high temperatureheat pump heat recovery exergy destruction R1234ze(Z) working fluid
原文传递
Working fluids of a low-temperature geothermally-powered Rankine cycle for combined power and heat generation system 被引量:4
12
作者 GUO Tao WANG HuaiXin ZHANG ShengJun 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第11期3072-3078,共7页
A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger an... A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids. 展开更多
关键词 organic Rankine cycle(ORC) low-temperature geothermal working fluids power generation heat production heat pump
原文传递
Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization 被引量:3
13
作者 LI Dian-xun ZHANG Shu-sheng WANG Gui-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第3期458-464,共7页
In the current study, simulations based on the engineering equation solver (EES) software are performed to determine the suitable working fluid for the simple organic Rankine cYcle system in different temperature ra... In the current study, simulations based on the engineering equation solver (EES) software are performed to determine the suitable working fluid for the simple organic Rankine cYcle system in different temperature ranges. Under the condition of various temperatures and a constant thermal power of the flue gas, the influence of different organic working fluids on the efficiency of the subcritical organic Rankine cycle power generation system is studied, and its efficiency and other parameters are compared with those of the regenerator system. It is shown that the efficiency of the subcritical organic Rankine cycle system is the best when the parameters of the working fluid in the expander inlet are in the saturation state. And for the organic Rankine cycle, the R245fa is better than other working fluids and the efficiency of the system reaches up to 10.2% when the flammability, the toxicity, the ozone depletion, the greenhouse effect and other factors of the working fluids are considered. The R60 l a working fluid can be used for the high-temperature heat source, however, because of its high flammability, new working fluid should be investigated. Under the same condition, the efficiency of the organic Rankine cycle power generation system with an internal heat exchanger is higher than that of the simple system without the internal heat exchanger, but the efficiency is related to the properties of the working fluid and the temperature of the heat source. 展开更多
关键词 Rankine cycle working fluid waste heat heat exchanger LOW-TEMPERATURE
原文传递
Parametric optimization and performance comparison of organic Rankine cycle with simulated annealing algorithm 被引量:3
14
作者 王志奇 周乃君 +2 位作者 张家奇 郭静 王晓元 《Journal of Central South University》 SCIE EI CAS 2012年第9期2584-2590,共7页
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,... Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃. 展开更多
关键词 parametric optimization organic Rankine cycle simulated annealing algorithm working fluid low-temperature source
下载PDF
Heat Transfer Performance of Microgroove Back Plate Heat Pipes with Working Fluid and Heating Power 被引量:2
15
作者 WU Yanpeng JIA Jie +1 位作者 TIAN Dongmin CHUAH Yew Khoy 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期982-991,共10页
Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back p... Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back plate heat pipes. This paper discusses about influence on thermal resistance through experiments and numerical simulation with different working fluids, filling ratio and heat power. Thermal resistance of the CO2 filled heat pipe is 14.8% lower than the acetone filled heat pipe. In the meantime, at the best filling ratio of 40%, the CO2 filled heat pipe has the optimal heat transfer behavior with the smallest thermal resistance of 0.123 K/W. The thermal resistance continues to decline but the magnitude of decreases is going to be minor. In addition, this paper illustrates methods about how to enhance heat pipe performance from working fluids, filling ratio and heat power, which provides a theoretical basis for practical applications. 展开更多
关键词 microgroove back plate heat pipes working fluids filling ratio heat power
原文传递
Energetic Analysis and Working Fluids Selection for a New Power and Refrigeration Combined Ecological System
16
作者 Noureddine TOUJANI Nahla BOUAZIZ Lakder KAIROUANI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2032-2050,共19页
The main purpose of this study is to analyze the performance of a new system that combines organic Rankine Cycle(ORC) and vapor compression refrigeration cycle(VCRC) for refrigeration and cogeneration. This system use... The main purpose of this study is to analyze the performance of a new system that combines organic Rankine Cycle(ORC) and vapor compression refrigeration cycle(VCRC) for refrigeration and cogeneration. This system uses low-temperature heat sources such as solar energy, geothermal, industrial waste heat and biomass. The novelty of the proposed system manifests itself essentially in: the development of new ORC-VCRC combination architecture, lowering the ORC condensing temperature, the possibility of refrigeration production by the ORC upstream of the pumping phase, preheating of ORC using VCRC fluid and new configurations based on the integration of heat recovery systems to improve the overall system performance. The first part of this study presents the energetic analysis for the basic system using different working fluids and investigation of the operating parameters effect on the system performance(The system performance is described by the ORC thermal efficiency, the VCRC coefficient of performance and the system overall efficiency). Ten working fluids have been selected in order to provide the most adequate candidates for the proposed system. The results showed that the heating temperature and the cooling temperature have a significant effect on the system performance. The choice of fluid was also mentioned;the obtained results confirmed that the best combination for the basic system is R236fa-acetone. Four system configurations are developed and analyzed in the second part of the study. Also in the same part of the study, we will compare these configurations in terms of the performance rate retained. In the last part, we will make a comparison of this new system with another system. 展开更多
关键词 combined cycle working fluids organic Rankine cycle vapor compression cycle
原文传递
Proposal and analysis of a coupled power generation system for natural gas pressure reduction stations
17
作者 LI Cheng-hao ZHENG Si-yang +2 位作者 CHEN Xing-yu LI Jie ZENG Zhi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期608-620,共13页
With the increased use of natural gas,it is valuable to study energy recovery ratio in the natural gas pressure reduction stations(PRSs).This paper focused on recovering the energy in PRSs as well as low-grade waste h... With the increased use of natural gas,it is valuable to study energy recovery ratio in the natural gas pressure reduction stations(PRSs).This paper focused on recovering the energy in PRSs as well as low-grade waste heat by a coupled power generation system(CPGS).The CPGS integrates a natural gas expansion(NGE)subsystem and an organic Rankine cycle(ORC)subsystem driven by low-temperature waste heat.Firstly,a comparative analysis is carried out between the separated natural gas expansion system and the separated ORC system.Then,the effects of heat source conditions,upstream pressure of natural gas and the isentropic efficiency of the natural gas expander are investigated.At last,working fluids selection is conducted with respect to two different pressure ranges of natural gas.The results show that there is an optimal temperature and mass flow rate of the heat source that maximizes the system exergy efficiency.With the increase of the upstream pressure of natural gas,the net power output and waste heat recovery factor increase while the system exergy efficiency has an optimal point.Furthermore,the isentropic efficiency of the natural gas expander has a great influence on the net power output of the system. 展开更多
关键词 natural gas energy recovery organic Rankine cycle(ORC) working fluids selection
下载PDF
Analysis of Ejector Cooling Flow
18
作者 Butovskyi Iegor Kogut Volodimyr Khmelniuk Mykhailo 《Chinese Business Review》 2017年第4期203-209,共7页
Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated... Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃. 展开更多
关键词 ejector heat exchanger stain-gauge balances insulated cooled room cooling flow hydrocarbons working fluid
下载PDF
Influence of Condensing Temperature on Heat Pump Efficiency
19
作者 Karlo Filipan Veljko Filipan Igor Sutlovic 《Journal of Chemistry and Chemical Engineering》 2011年第3期211-216,共6页
The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express... The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application. 展开更多
关键词 Heat pump condensing temperature coefficient of performance real working fluid compressor efficiency.
下载PDF
Preliminary Design Study on Concentrated Solar Power PVRs to Operate with RCBC
20
作者 Ramon Ferreiro Garcia Manuel Romero Gomezt +1 位作者 Alberto DeMiguel Catoira Javier Romero Gomez 《Journal of Energy and Power Engineering》 2013年第1期88-95,共8页
Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) op... Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium. 展开更多
关键词 Closed Brayton cycle concentrated solar power parabolic dish parabolic through volumetric receiver thermal efficiency working fluid.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部