In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway su...In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways.展开更多
When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Consider...When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Considering the effects of strike angle on support stability, the ‘‘support-surrounding rock"mechanical models of support topple and support slip were established in this paper. On the basis, the influencing factors of support stability were analyzed and the technical measures of controlling support and surrounding rock stability were put forward. Then the loose particles simulation experiment was conducted to analyze the impacts of caving directions and methods on the top-coal recovery in large dip angle fully-mechanized caving face. Finally, the ‘‘upward sequence and double-openings doublerounds" caving technology was determined. The research results are of great scientific significance and practical values to improve large dip thick seam mining technology.展开更多
A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convere...A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convereion tables ofworking rainfall ,grading tables of resistant ability to rainfall, and the warningrairifall levels are made, forming the chief part of a practical computer-aideddecisionmaking system. Usins the system, the danser degree of railway slopescan be predicted, and the reinforcins ensineerins and the flood control workcan also be arranged ratiofially.展开更多
基金This work was supported by the National Natural Science Foundation of China(51774009,51874006,and 51904010)Key Research and Development Projects in Anhui Province(202004a07020045)+2 种基金Colleges and Universities Natural Science Foundation of Anhui(KJ2019A0134)Anhui Provincial Natural Science Foundation(2008085ME147)Anhui University of Technology and Science Graduate Innovation Foundation(2019CX2007).
文摘In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways.
基金provided by the National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the Qing Lan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Considering the effects of strike angle on support stability, the ‘‘support-surrounding rock"mechanical models of support topple and support slip were established in this paper. On the basis, the influencing factors of support stability were analyzed and the technical measures of controlling support and surrounding rock stability were put forward. Then the loose particles simulation experiment was conducted to analyze the impacts of caving directions and methods on the top-coal recovery in large dip angle fully-mechanized caving face. Finally, the ‘‘upward sequence and double-openings doublerounds" caving technology was determined. The research results are of great scientific significance and practical values to improve large dip thick seam mining technology.
文摘A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convereion tables ofworking rainfall ,grading tables of resistant ability to rainfall, and the warningrairifall levels are made, forming the chief part of a practical computer-aideddecisionmaking system. Usins the system, the danser degree of railway slopescan be predicted, and the reinforcins ensineerins and the flood control workcan also be arranged ratiofially.