期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DEVELOPMENT OF A 3-DOF MICRO-POSITIONING WORKPIECE TABLE 被引量:5
1
作者 ZhangDawei TianYanling GaoYongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期46-50,共5页
In order to achieve active grinding control, a novel numerical controlmicropositioning workpiece table with a resolution of 6 nm has been developed. The table is drivenby three piezoelectric actuators mounted on the b... In order to achieve active grinding control, a novel numerical controlmicropositioning workpiece table with a resolution of 6 nm has been developed. The table is drivenby three piezoelectric actuators mounted on the base. An elastic structure with three half-notchflexure hinges is designed to apply preload to the piezoelectric actuators. The position of flexurebinges is also elaborately designed with consideration to reduce the bending deformation of themoving part. Three capacitive sensors are used to form close loop control system. Considering thetable as a damped 3-DOF mass-spring system, the models of static and dynamic stiffness and errorowing to the action of external forces have been established. In order to make the table have highresolution and positioning accuracy, an error compensation algorithm is implemented by using theestablished models. The experimental testing has been carried out to verify the performance of theworkpiece table and the established models of the micropositioning workpiece table. 展开更多
关键词 Micropositioning workpiece table Piezoelectric actuator Flexure hinge
下载PDF
Dynamics and Control of Grinding Machine with Micropositioning Workpiece Table 被引量:1
2
作者 田延岭 张大卫) 闫兵 《Transactions of Tianjin University》 EI CAS 2006年第3期157-162,共6页
To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic co... To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm. 展开更多
关键词 micropositioning workpiece table surface grinding dynamic modeling nonlinear PID controller
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部