Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted ...Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.展开更多
The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri...The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.展开更多
The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,or...The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.展开更多
The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity...The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity.The developed high-level Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)are briefed which may be particularly useful for solving numerous conflicts and crises problems emerging in different areas during this transitional period,in both local and global scale.SGT employs unlimited spatial scenario mobility and parallel holistic matching of distributed systems,with numerous communicating SGL interpreters potentially installed worldwide.Basic network creation and management operations are described in SGL which may operate on top of existing communication systems or serve individually as high level network protocols in case of non-local crises and disasters.Different operations on social networks are presented in SGL including finding strongest and weakest components with resultant changing of network topologies,also determining distances between different communities for preventing and predicting social conflicts.Fully distributed analysis,and tracing and simulation of multiple mobile objects in distributed spaces with complex routes are shown in SGL related to cruise missiles,defence objects and debris in outer space,as well as massively moving refugees through international borders.The proposed technology had trial implementations and applications in different countries,and its latest version can be readily installed by agreement on any platforms needed.展开更多
Distributed Hash Tables (DHTs) were originated from the design of structured peer-to-peer (P2P) systems. A DHT provides a key-based lookup service similar to a hash table. In this paper, we present the detailed design...Distributed Hash Tables (DHTs) were originated from the design of structured peer-to-peer (P2P) systems. A DHT provides a key-based lookup service similar to a hash table. In this paper, we present the detailed design of a new DHT protocol, Tambour. The novelty of the protocol is that it uses parallel lookup to reduce retrive latency and bounds communication overhead to a dynamically adjusted routing table. Tambour estimates the probabilities of routing entries' liveness based on statistics of node lifetime history and evicts dead entries after lookup failures. When the network is unstable, more routing entries will be evicted in a given period of time, and the routing tables will be getting smaller which minimize the number of timeouts for later lookup requests. An experimental prototype of Tambour has been simulated and compared against two popular DHT protocols. Results show that Tambour outperforms the compared systems in terms of bandwith cost, lookup latency and the overall efficiency.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61573262,and 61303061)
文摘Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61303061,and 71201169)
文摘The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.
文摘The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.
文摘The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity.The developed high-level Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)are briefed which may be particularly useful for solving numerous conflicts and crises problems emerging in different areas during this transitional period,in both local and global scale.SGT employs unlimited spatial scenario mobility and parallel holistic matching of distributed systems,with numerous communicating SGL interpreters potentially installed worldwide.Basic network creation and management operations are described in SGL which may operate on top of existing communication systems or serve individually as high level network protocols in case of non-local crises and disasters.Different operations on social networks are presented in SGL including finding strongest and weakest components with resultant changing of network topologies,also determining distances between different communities for preventing and predicting social conflicts.Fully distributed analysis,and tracing and simulation of multiple mobile objects in distributed spaces with complex routes are shown in SGL related to cruise missiles,defence objects and debris in outer space,as well as massively moving refugees through international borders.The proposed technology had trial implementations and applications in different countries,and its latest version can be readily installed by agreement on any platforms needed.
文摘Distributed Hash Tables (DHTs) were originated from the design of structured peer-to-peer (P2P) systems. A DHT provides a key-based lookup service similar to a hash table. In this paper, we present the detailed design of a new DHT protocol, Tambour. The novelty of the protocol is that it uses parallel lookup to reduce retrive latency and bounds communication overhead to a dynamically adjusted routing table. Tambour estimates the probabilities of routing entries' liveness based on statistics of node lifetime history and evicts dead entries after lookup failures. When the network is unstable, more routing entries will be evicted in a given period of time, and the routing tables will be getting smaller which minimize the number of timeouts for later lookup requests. An experimental prototype of Tambour has been simulated and compared against two popular DHT protocols. Results show that Tambour outperforms the compared systems in terms of bandwith cost, lookup latency and the overall efficiency.