The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composit...The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composites, inter-strand gap effects on the mechanical properties were studied, while three cases of geometries with inter-strand gaps in two-layered composites were evaluated. A woven fiber micromechanics analytical model called MESOTEX was employed for theoretical simulation. The predicted results show that the inter-strand gap and simple variation of the strand positions in a repeating unit cell significantly affect the mechanical properties of woven fabric composites.展开更多
The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liq...The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.展开更多
基金Work supported by the Second Stage of the Brain Korea 21 Projects
文摘The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composites, inter-strand gap effects on the mechanical properties were studied, while three cases of geometries with inter-strand gaps in two-layered composites were evaluated. A woven fiber micromechanics analytical model called MESOTEX was employed for theoretical simulation. The predicted results show that the inter-strand gap and simple variation of the strand positions in a repeating unit cell significantly affect the mechanical properties of woven fabric composites.
文摘The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.