How to obtain an effective design is a major concern of scientific research. This topic always involves high-dimensional inputs with limited resources. The foldover is a quick and useful technique in construction of f...How to obtain an effective design is a major concern of scientific research. This topic always involves high-dimensional inputs with limited resources. The foldover is a quick and useful technique in construction of fractional designs, which typically releases aliased factors or interactions.This paper takes the wrap-around L_2-discrepancy as the optimality measure to assess the optimal three-level combined designs. New and efficient analytical expressions and lower bounds of the wraparound L_2-discrepancy for three-level combined designs are obtained. The new lower bound is useful and sharper than the existing lower bound. Using the new analytical expression and lower bound as the benchmarks, the authors may implement an effective algorithm for constructing optimal three-level combined designs.展开更多
The objective of this paper is to study the issue of uniformity on three-level U-type designs in terms of the wrap-around L2-discrepancy.Based on the known formula,we present a new lower bound of wrap-around L2-discre...The objective of this paper is to study the issue of uniformity on three-level U-type designs in terms of the wrap-around L2-discrepancy.Based on the known formula,we present a new lower bound of wrap-around L2-discrepancy for three-level U-type designs and compare it with those existing ones through figures,numerical simulation and illustrative examples.展开更多
The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around...The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around L2-discrepancy for the extended designs is developed. As a benchmark of obtaining (nearly) uniform asymmetrical extended designs, a lower bound to the wrap-around L2- discrepancy for our proposed designs is established. Thorough numerical results are displayed, which provide further corroboration to the derived theoretical results.展开更多
Follow-up experimental designs are widely applied to explore the relationship between factors and responses step by step in various fields such as science and engineering.When some additional resources or information ...Follow-up experimental designs are widely applied to explore the relationship between factors and responses step by step in various fields such as science and engineering.When some additional resources or information become available after the initial design of experiment is carried out,some additional runs and/or factors may be added in the follow-up stage.In this paper,the issue of the uniform row augmented designs and column augmented designs with mixed two-,three-and four-level is investigated.The uniformity of augmented designs is discussed under the wrap-around L_(2)-discrepancy.Some lower bounds of wrap-around L_(2)-discrepancy for the augmented designs are obtained,which can be used to assess uniformity of augmented design.Numerical results show that augmented designs have high efficiency,which have low discrepancy and close to the proposed lower bounds.展开更多
Space-filling designs are widely used in various fields because of their nice space-filling properties.Uniform designs are one of space-filling designs,which desires the experimental points to scatter uniformly over t...Space-filling designs are widely used in various fields because of their nice space-filling properties.Uniform designs are one of space-filling designs,which desires the experimental points to scatter uniformly over the experimental area.For practical need,the construction and their properties of nine-level uniform designs are discussed via two code mappings in this paper.Firstly,the algorithm of constructing nine-level uniform designs is presented from an initial three-level design by the Type-I code mapping and tripling technique.Secondly,the algorithm of constructing nine-level uniform designs is presented from a three-level base design by the Type-II code mapping and generalized orthogonal arrays.Moreover,relative properties are discussed based on the two code mappings.Finally,some numerical examples are given out for supporting our theoretical results.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.11271147,11471135,11471136the UIC Grant R201409+1 种基金the Zhuhai Premier Discipline Grantthe Self-Determined Research Funds of CCNU from the Colleges Basic Research and Operation of MOE under Grant Nos.CCNU14A05041,CCNU16A02012
文摘How to obtain an effective design is a major concern of scientific research. This topic always involves high-dimensional inputs with limited resources. The foldover is a quick and useful technique in construction of fractional designs, which typically releases aliased factors or interactions.This paper takes the wrap-around L_2-discrepancy as the optimality measure to assess the optimal three-level combined designs. New and efficient analytical expressions and lower bounds of the wraparound L_2-discrepancy for three-level combined designs are obtained. The new lower bound is useful and sharper than the existing lower bound. Using the new analytical expression and lower bound as the benchmarks, the authors may implement an effective algorithm for constructing optimal three-level combined designs.
基金Supported in part by the National Natural Science Foundation of China(Nos.11871237,11801576,11271147,11401596)the Fundamental Research Funds for the Central Universities(South-Central University for Nationalities(Nos.CZQ18017,CZQ19010))
文摘The objective of this paper is to study the issue of uniformity on three-level U-type designs in terms of the wrap-around L2-discrepancy.Based on the known formula,we present a new lower bound of wrap-around L2-discrepancy for three-level U-type designs and compare it with those existing ones through figures,numerical simulation and illustrative examples.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271147,11471135,11471136support of Excellent Doctoral Dissertation to Cultivate Project of Central China Normal University under Grant No.2017YBZZ057
文摘The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around L2-discrepancy for the extended designs is developed. As a benchmark of obtaining (nearly) uniform asymmetrical extended designs, a lower bound to the wrap-around L2- discrepancy for our proposed designs is established. Thorough numerical results are displayed, which provide further corroboration to the derived theoretical results.
基金supported by the National Natural Science Foundation of China(Nos.12361053,11961027,12161040)Hunan Provincial Natural Science Foundation of China(No.2023JJ30486)Scientific Research Plan Item of Hunan Provincial Department of Education(No.22A0355)。
文摘Follow-up experimental designs are widely applied to explore the relationship between factors and responses step by step in various fields such as science and engineering.When some additional resources or information become available after the initial design of experiment is carried out,some additional runs and/or factors may be added in the follow-up stage.In this paper,the issue of the uniform row augmented designs and column augmented designs with mixed two-,three-and four-level is investigated.The uniformity of augmented designs is discussed under the wrap-around L_(2)-discrepancy.Some lower bounds of wrap-around L_(2)-discrepancy for the augmented designs are obtained,which can be used to assess uniformity of augmented design.Numerical results show that augmented designs have high efficiency,which have low discrepancy and close to the proposed lower bounds.
基金supported by the National Natural Science Foundation of China(Nos.12161040,119610271,1701213,11871237)Natural Science Foundation of Hunan Province(Nos.2020JJ4497,2021JJ30550)+2 种基金Scientific Research Plan Item of Hunan Provincial Department of Education(No.19A403)Graduate Scientific Research Innovation Item of Hunan Province(No.CX20211504)the Scientific Research Item of Jishou University(No.Jdy20057)。
文摘Space-filling designs are widely used in various fields because of their nice space-filling properties.Uniform designs are one of space-filling designs,which desires the experimental points to scatter uniformly over the experimental area.For practical need,the construction and their properties of nine-level uniform designs are discussed via two code mappings in this paper.Firstly,the algorithm of constructing nine-level uniform designs is presented from an initial three-level design by the Type-I code mapping and tripling technique.Secondly,the algorithm of constructing nine-level uniform designs is presented from a three-level base design by the Type-II code mapping and generalized orthogonal arrays.Moreover,relative properties are discussed based on the two code mappings.Finally,some numerical examples are given out for supporting our theoretical results.