期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analysis on Ammonia Synthesis over Wustite-Based Iron Catalyst
1
作者 李小年 刘化章 +1 位作者 岑亚青 胡樟能 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期19-26,共8页
Wustite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions. The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the... Wustite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions. The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the classical Temkin-Pyzhev and modified Temkin equations with optimized a of 0.5. The pre-exponent factors and activation energies at the pressures of 8.0 and 15.0MPa are respectively k0 = 1.09 x 1015, 7.35 X 1014Pa0.5.s-1, and E = 156.6, 155.5kJ-mol-1 derived from the classical Temkin-Phyzhev equation, as well as k0 = 2.45 X 1014, 1.83 X 1014Pa0.5s-1, and E = 147.7, 147.2kJ-mol-1 derived from the modified Temkin equation. Although the degree of reduction under isothermal condition is primarily dependent upon temperature, low pressure seems to be imperative for reduction under high temperature and low space velocity to be considered as a high activity catalyst. The reduction behavior with dry feed gas can be illustrated perfectly by the shrinking-sphere-particle model, by which the reduction-rate constants of 4248exp (-71680/KT) and 644exp (-87260/RT) were obtained for the powder (0.045-0.054mm) and irregular shape (nominal diameter 3.17 mm) catalysts respectively. The significant effect of particle size on reduction rate was observed, therefore, it is important to take into account the influence of particle size on reduction for the optimization of reduction process in industry. 展开更多
关键词 wustite-based catalyst ammonia synthesis catalytic activity reduction behavior kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部