From the perspectives of sustainable development and creating high-quality tourism brand,this study proposed the scheme of establishing two particular eco-tourism routes based on the characteristics of tourist resourc...From the perspectives of sustainable development and creating high-quality tourism brand,this study proposed the scheme of establishing two particular eco-tourism routes based on the characteristics of tourist resources and present tourism development in Wutai Mountainous Scenic Area.The conception of eco-tourism would be able to integrate typical and unique temple landscapes and geological heritages in the study area,in this way to create high-quality tourism brands,make the travel more scientific and interesting,and give it higher ornamental and cultural value.展开更多
The Wutai Complex associated with the adjacent Fuping and Hengshan Complexes represents the best and dassical cross-section in the middle segment of the Trans-North China Orogen, generally divided into Eastern and Wes...The Wutai Complex associated with the adjacent Fuping and Hengshan Complexes represents the best and dassical cross-section in the middle segment of the Trans-North China Orogen, generally divided into Eastern and Western Blocks. Unconformably overlying the Wutai and Fuping Complexes is the Hutuo Group considered as the youngest lithostratigraphic unit in the region and important both for interpreting Precambrian history as well as the overall evolution of the Trans-North China Orogen. Lack of knowledge about provenance of the sedimentary rocks in this group has hindered understanding of the depositional environments and tectonic significance. LA-ICP-MS was applied to obtain U-Pb zircon ages for the granitic pebbles, the lowest lithostratigraphic rock of the Hutuo Group, which, combined with previous lithostratigraphic, geochronological, structural and metamorphic data, provides new constraints on the sedimentary provenance and tectonic evolution of the region. The sequence of the Hutuo Group ranges upward from lower basal conglomerates and volcaniclastic rocks (Doucun Subgroup), through clastic sediments, slates, dolomites and marbles (Dongye Subgroup), to sandstones and conglomerates at the top (Guojiazhai Subgroup). Zircons from granitic pebbles preserved in the Doucun Subgroup basal conglomerates give weighted mean ^207pb/^206pb ages between 2517 Ma and 2566 Ma, which are the same as those for the late Archean Wutai Granitoids, indicating that the pebbles were derived from the Wutai granitic intrusions (2566-2515 Ma). Based on the new data and previous studies, combined with an igneous zircon crystallization age of 2087±9 Ma obtained for volcanics in the Hutuo Group, the Hutuo Group was deposited in a subduction-related retro-arc foreland basin environment that developed behind the Wutai arc during the eastward-directed subduction of the Western Block beneath the western margin of the Eastern Block. This basin underwent long-lived sedimentation and finally closed during the -1850 Ma collisional event that resulted in the final amalgamation of the North China Craton.展开更多
The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), m...The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ~2.5-2.3 Ga and the third one at ~1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows.(1)~2.6-2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite(TTG) magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean.(2) ~ 2.5-2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization.(3)~2.2-2.1 Ga:extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits.(4)~2.2-2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region.(5)~1.95-1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.展开更多
Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite norm...Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.展开更多
In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic plu...In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.展开更多
An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was d...An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;(iii)a crustal thickening event in the extended region resulting in a kyanitetype metamorphism at ~1.95 Ga,and(iv) uplifting and cooling of the thickened crust from 1.93 to 1.80 Ga.展开更多
The northern piedmont fault of Wutai Mountain is located at the north of the Shanxi Graben system, which is the dominating fault of the south boundary of the Fanshi-Daixian depression. This paper discusses the fault a...The northern piedmont fault of Wutai Mountain is located at the north of the Shanxi Graben system, which is the dominating fault of the south boundary of the Fanshi-Daixian depression. This paper discusses the fault activity and paleoearthquakes around the Nanyukou segment of the northern piedmont fault of Wutai Mountain during the late Quaternary through field investigation along the fault, measuring geomorphic deformation and excavating trenches at some important sites. From Nanyukou to the southwest of Shanhui, we find obviously dislocated alluvial fans, with strong neotectonic movement at these sites. Since nearly 20ka, the vertical average slip rate is 1.55mm/a to 2.0mm/a. However,since nearly 6ka,it has reached as high as 2.3mm/a, which is twice that on other segments. 2 trenches were excavated around Nanyukou with 6 events discovered. The referenced ages of the events are before 7600a, 6700a - 7600a, 5321a - 5575a, 4400a - 5400a,420Oa-4400a and after 1600a B.P. with approximate recurrence interval 1400a. The latest event is likely to be the earthquake occurring at 512 A. D. ,so it is necessary to do further work to verify this in the future.展开更多
Dao Xuan’s Gantonglu records:“About fifteen kilometers down from the southeast of the Wutai Mountain,there is the ancient Dafu Lingjiu Temple,and there are two Taoist temples in the east and west,where Buddhist matt...Dao Xuan’s Gantonglu records:“About fifteen kilometers down from the southeast of the Wutai Mountain,there is the ancient Dafu Lingjiu Temple,and there are two Taoist temples in the east and west,where Buddhist matters are fulfilled.According to ancient legend,it was made by Emperor Ming of the Han Dynasty”(Daoxuan,Tang Dynasty,p.257).It can be seen that Buddhism has been introduced into Wutai Mountain since the Eastern Han Dynasty,and Buddhist temple murals have been painted on the walls of temples with the introduction of Buddhism,playing the role of spreading scriptures and decorating the walls.The pattern of Buddha’s futon base in the murals reflects the worship and rank differences of Buddhist monks in different periods.As a medium of meditation and worship,futuan is also a ritual instrument in Buddhist legend,which is of great significance.The research on the style of futon from the perspective of the frescoes in the temple of Wutai Mountain mainly focuses on the historical evolution of the frescoes and futon,the research and analysis of the base shape,pattern,composition and color of the futon in the frescoes of the temple.Explore the religious significance and historical and cultural value behind the futon style.展开更多
LOCATED in central China's Shanxi Province, Wutai Mountain is seen as the global center for Buddhist Manjusri worship, and one of the four sacred Buddhist mountains in China. Its five main peaks, positioned east, so...LOCATED in central China's Shanxi Province, Wutai Mountain is seen as the global center for Buddhist Manjusri worship, and one of the four sacred Buddhist mountains in China. Its five main peaks, positioned east, south, west, north, and in the middle, embrace one another with broad and plain terraces rather than forests on their peaks. That is why it bears the name Wutai Mountain, which literally means Mountain of Five Terraces.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
基金Sponsored by the Foundation of Humanities and Social Sciences of the Ministry of Education (09YJA630150)~~
文摘From the perspectives of sustainable development and creating high-quality tourism brand,this study proposed the scheme of establishing two particular eco-tourism routes based on the characteristics of tourist resources and present tourism development in Wutai Mountainous Scenic Area.The conception of eco-tourism would be able to integrate typical and unique temple landscapes and geological heritages in the study area,in this way to create high-quality tourism brands,make the travel more scientific and interesting,and give it higher ornamental and cultural value.
基金This research was financially supported by the National Natural Science Foundation of China (Grants 40429001, 40420120135 and 40472098)Hong Kong RGC (Grants 7055/05P, 7058/04P, 7055/03P and 7048/03P).
文摘The Wutai Complex associated with the adjacent Fuping and Hengshan Complexes represents the best and dassical cross-section in the middle segment of the Trans-North China Orogen, generally divided into Eastern and Western Blocks. Unconformably overlying the Wutai and Fuping Complexes is the Hutuo Group considered as the youngest lithostratigraphic unit in the region and important both for interpreting Precambrian history as well as the overall evolution of the Trans-North China Orogen. Lack of knowledge about provenance of the sedimentary rocks in this group has hindered understanding of the depositional environments and tectonic significance. LA-ICP-MS was applied to obtain U-Pb zircon ages for the granitic pebbles, the lowest lithostratigraphic rock of the Hutuo Group, which, combined with previous lithostratigraphic, geochronological, structural and metamorphic data, provides new constraints on the sedimentary provenance and tectonic evolution of the region. The sequence of the Hutuo Group ranges upward from lower basal conglomerates and volcaniclastic rocks (Doucun Subgroup), through clastic sediments, slates, dolomites and marbles (Dongye Subgroup), to sandstones and conglomerates at the top (Guojiazhai Subgroup). Zircons from granitic pebbles preserved in the Doucun Subgroup basal conglomerates give weighted mean ^207pb/^206pb ages between 2517 Ma and 2566 Ma, which are the same as those for the late Archean Wutai Granitoids, indicating that the pebbles were derived from the Wutai granitic intrusions (2566-2515 Ma). Based on the new data and previous studies, combined with an igneous zircon crystallization age of 2087±9 Ma obtained for volcanics in the Hutuo Group, the Hutuo Group was deposited in a subduction-related retro-arc foreland basin environment that developed behind the Wutai arc during the eastward-directed subduction of the Western Block beneath the western margin of the Eastern Block. This basin underwent long-lived sedimentation and finally closed during the -1850 Ma collisional event that resulted in the final amalgamation of the North China Craton.
基金supported by the Ministry of Science and Technology of China for the National Key Research and Development Program(Grand No.2016YFC0600106)the National Natural Science Foundation of China(Grand Nos.41602028 and 90914002)contributed to the 1000 Talent Award to M.Santosh from the Chinese Government
文摘The Wutai greenstone belt in central North China Craton(NCC) hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation(BIF), meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ~2.5-2.3 Ga and the third one at ~1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows.(1)~2.6-2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite(TTG) magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean.(2) ~ 2.5-2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization.(3)~2.2-2.1 Ga:extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits.(4)~2.2-2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region.(5)~1.95-1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.
基金The National Natural Science Foundation of. China (Grant No.40420120135 and 40472096) are thankefl for the fthancial support.
文摘Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.
基金This study is financially supported by the National Natural Science Foundation of China (No. 40420120135).
文摘In this paper we report geochemical and Nd-Sr isotopic data for a late Archean gneissic granitic pluton (Hengling pluton), an early Paleoproterozoic complex (Xipan complex) and a late Paleoproterozoic granitic pluton (Yunzhongshan granites) from the Liiliang-Wutai terrain, North China, to trace the source of these late Archean-Paleoproterozoic granitoids and, particularly, to understand the nature and mechanism of continental growth at that time. The Hengling granitic gneisses (ca. 2.51 Ga) are characterized by high Na2O and LILEs, TTG-like REE patterns (highly depleted HREE and minor Eu anomalies) and moderately depleted Nd-Sr isotopic compositions (εNd(t) =1.2-2.7, ISr=0.7015-0.7019), and were considered as being products of arc magmatism that was developed upon the North China craton. The Xipan complex (ca. 2.2 Ga) contain gabbroic diorite and monzonite, mostly being Na2O-rich, highly fractionated REE patterns and isotopically enriched (εNd(t) =-1.5 to -4.1, Isr=0.7038-0.706). The gabbroic diorites probably originated from melting of an enriched mantle source, but significantly contaminated by lower crustal material, and the monzonites probably represent a product of a mixture between the gabbroic dioritic magma and granitic melts of crustal origin. The Yunzhongshan post-collisional granitoids (ca. 1.8 Ga) are characterized by high-K affinity and highly-enriched and homogeneous Nd isotopic compositions (εNd(t)=-4.9 to -5.7), although they split into two groups in terms of REE patterns: one group showing elevated HREE (and Sc, Y and Zr) with significant negative Eu anomalies and the other showing highly depleted HREE and, to a lesser extent, mid-REE with negligible Eu anomalies. These granites are genetically related to a process of extensional collapse of a thickened orogen. They formed through magma mixing between mantle-derived basaltic magmas and crust-derived granitic melts, followed by significant fractionation of ferromagnesian phases (like hornblende and Cpx) and feldspar and accessory zircons. Some Yunzhongshan granites show very old Nd model ages (2.9-3.0 Ga), suggesting the existence of continental crust older than 2.7 Ga, which is supported by our zircon Hf isotopic data for these granites.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41172055 and 41121062)the China Survey of Geology(1212011121062)
文摘An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;(iii)a crustal thickening event in the extended region resulting in a kyanitetype metamorphism at ~1.95 Ga,and(iv) uplifting and cooling of the thickened crust from 1.93 to 1.80 Ga.
基金sponsored by the specific fund for basic research and industry of Institute of Crustal Dynamics,China Earthquake administration ( ZDJ2008-07,ZDJ2007-14)co-financed by the Joint Earthquake foundation ( C07028)research and special fund for theseismic industry (200,708,028)
文摘The northern piedmont fault of Wutai Mountain is located at the north of the Shanxi Graben system, which is the dominating fault of the south boundary of the Fanshi-Daixian depression. This paper discusses the fault activity and paleoearthquakes around the Nanyukou segment of the northern piedmont fault of Wutai Mountain during the late Quaternary through field investigation along the fault, measuring geomorphic deformation and excavating trenches at some important sites. From Nanyukou to the southwest of Shanhui, we find obviously dislocated alluvial fans, with strong neotectonic movement at these sites. Since nearly 20ka, the vertical average slip rate is 1.55mm/a to 2.0mm/a. However,since nearly 6ka,it has reached as high as 2.3mm/a, which is twice that on other segments. 2 trenches were excavated around Nanyukou with 6 events discovered. The referenced ages of the events are before 7600a, 6700a - 7600a, 5321a - 5575a, 4400a - 5400a,420Oa-4400a and after 1600a B.P. with approximate recurrence interval 1400a. The latest event is likely to be the earthquake occurring at 512 A. D. ,so it is necessary to do further work to verify this in the future.
基金This study was supported by the“2019 Planning Fund Project for Humanities and Social Science Research,Ministry of Education,China”.Project title:“Research on the Image of Utensils in the Remains of Ancient Murals in Shanxi-From Song and Jin to Ming and Qing”(approval number:19YJA760066)This study was supported by the“Teaching Reform and Innovation Project of Higher Education Institutions in Shanxi Province in 2022”,Project title:“Teaching System Reform and Nurturing Practice of Visual Communication Design Major under the View of Double First-class”(Project No.J20220002).
文摘Dao Xuan’s Gantonglu records:“About fifteen kilometers down from the southeast of the Wutai Mountain,there is the ancient Dafu Lingjiu Temple,and there are two Taoist temples in the east and west,where Buddhist matters are fulfilled.According to ancient legend,it was made by Emperor Ming of the Han Dynasty”(Daoxuan,Tang Dynasty,p.257).It can be seen that Buddhism has been introduced into Wutai Mountain since the Eastern Han Dynasty,and Buddhist temple murals have been painted on the walls of temples with the introduction of Buddhism,playing the role of spreading scriptures and decorating the walls.The pattern of Buddha’s futon base in the murals reflects the worship and rank differences of Buddhist monks in different periods.As a medium of meditation and worship,futuan is also a ritual instrument in Buddhist legend,which is of great significance.The research on the style of futon from the perspective of the frescoes in the temple of Wutai Mountain mainly focuses on the historical evolution of the frescoes and futon,the research and analysis of the base shape,pattern,composition and color of the futon in the frescoes of the temple.Explore the religious significance and historical and cultural value behind the futon style.
文摘LOCATED in central China's Shanxi Province, Wutai Mountain is seen as the global center for Buddhist Manjusri worship, and one of the four sacred Buddhist mountains in China. Its five main peaks, positioned east, south, west, north, and in the middle, embrace one another with broad and plain terraces rather than forests on their peaks. That is why it bears the name Wutai Mountain, which literally means Mountain of Five Terraces.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-153)the National Natural Science Foundation of China (40625006)the Fundamental Research Funds for the Central Universities (2011QNA04)
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.