p-i-n Al_(x)Ga_(1−x)As/GaAs detectors with graded compositions and graded doping were grown and prepared.From the current-voltage and capacitance-voltage measurement results,the devices had good p-n junction diode cha...p-i-n Al_(x)Ga_(1−x)As/GaAs detectors with graded compositions and graded doping were grown and prepared.From the current-voltage and capacitance-voltage measurement results,the devices had good p-n junction diode characteristics,and the electric field strength under an unbiased voltage was 1.7×10^(5) Vcm^(-1).The full width at half maximum and charge collection efficiency of the detectors obtained from energy spectrum measurements of 5.48-MeV alpha particles were 3.04 and approximately 93%,respectively.In this study,we created the most advanced and promising state-of-the-art unbiased detector reported to date.展开更多
In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for th...In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers.展开更多
基金supported by the National Natural Science Foundation of China(No.61964001)General Project of Jiangxi Province Key R&D Program(No.20212BBG73012)+3 种基金Natural Science Foundation of Jiangxi Province(No.20192BAB207033)Key Scientific Research Projects of Henan Higher Education Institutions(No.22A490001)State Key Laboratory of Particle Detection and Electronics(No.SKLPDE-KF-2019)Jiangxi Provincial Postdoctoral Science Foundation(No.2019RC30).
文摘p-i-n Al_(x)Ga_(1−x)As/GaAs detectors with graded compositions and graded doping were grown and prepared.From the current-voltage and capacitance-voltage measurement results,the devices had good p-n junction diode characteristics,and the electric field strength under an unbiased voltage was 1.7×10^(5) Vcm^(-1).The full width at half maximum and charge collection efficiency of the detectors obtained from energy spectrum measurements of 5.48-MeV alpha particles were 3.04 and approximately 93%,respectively.In this study,we created the most advanced and promising state-of-the-art unbiased detector reported to date.
基金supported by the National Natural Science Foundation of China under Grant Nos.61376067 and61474118
文摘In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers.