Faraday isolators can prevent the front-end system from disturbance and damage caused by a back-reflected beam,so they are important elements in laser systems.As magneto-optical materials are the most important compon...Faraday isolators can prevent the front-end system from disturbance and damage caused by a back-reflected beam,so they are important elements in laser systems.As magneto-optical materials are the most important component in Faraday isolators,the studies on magneto-optical materials have attracted much attention these years.Tb_(3)Al_(5)O_(12)(TAG)ceramics are considered to be one of the most promising magneto-optical materials for visible to near-infrared wavelength band application because of their outstanding comprehensive magneto-optical performance.However,the optical quality of TAG ceramics needs further optimization to meet the application requirements.In this work,high optical quality(Tb_(1−x)Y_(x))_(3)Al_(5)O_(12)(x=0,0.05,0.1,0.2,and 0.3)magneto-optical ceramics were fabricated successfully by solid-state reaction sintering combined with hot isostatic pressing(HIP)post-treatment.All the ceramics obtained showed a single garnet phase for different values of x in the range studied.The addition of Y_(2)O_(3) was found to suppress the secondary phase and improve optical quality significantly.The ceramic samples obtained had clear grain boundaries and possessed the in-line transmittance values of 82.9%at 1064 nm and 82.2%at 633 nm,respectively.The Verdet constants of(Tb_(1−x)Y_(x))_(3)Al_(5)O_(12)ceramics with x=0,0.05,0.1,0.2,and 0.3 were−188.1,−175.4,−168.5,−143.0,and−119.9 rad/(T·m),respectively.The thermal conductivity of TAG ceramics was found to be 5.23 W/(m·K)at 25℃,and when 20%Y was substituted in place of Tb,the thermal conductivity decreased by only 9.4%.展开更多
Recently, lanthanide-ion-doped luminescent materials have been extensively used as optical thermometry probes due to their fast responses, non-contact, and high sensitivity properties. Based on different responses of ...Recently, lanthanide-ion-doped luminescent materials have been extensively used as optical thermometry probes due to their fast responses, non-contact, and high sensitivity properties. Based on different responses of two emissions to temperature, the fluorescence intensity ratio(FIR) technique can be used to estimate the sensitivities for assessing the optical thermometry performances. In this study, we introduce different doping concentrations of Eu^(3+) ions into negative thermal expansion material Sc2W3O12to increase the thermal-enhanced luminescence from 373 K to 548 K, and investigate the temperature sensing properties in detail. All samples can exhibit their good luminescence behaviors thermally enhanced.The emission intensity of Sc2W3O12:6-mol% Eu3+phosphor reaches 147.8% of initial intensity at 473 K. As the Eu3+doping concentration increases, the resistance of the sample to thermal quenching decreases. The FIR technique based on each of the transitions 5D→7F_(1)(592 nm) and 5D→7F_(2)(613 nm) of Eu3+ions demonstrates a maximum relative temperature sensitivity of 3.063% K-1at 298 K for Sc_(2)W_(3)O_(12):6-mol% Eu3+phosphor. The sensitivity of sample decreases with the increase of Eu3+concentration. Benefiting from the thermal-enhanced luminescence performance and good temperature sensing properties, the Sc_(2)W_(3)O_(12):Eu^(3+)phosphors can be used as optical thermometers.展开更多
NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定...NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定性好,但其立方相结构不稳定,影响其实际应用。采用溶液浇筑法,制备纯PVDF-LiTFSI电解质膜和以PVDF为基、3种不同质量比的Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)的固态电解质膜,并探讨纯PVDF-LiTFSI电解质膜和3种不同质量比的活性无机电解质填料对复合固态电解质离子电导率的影响。结果表明,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时,电解质膜的XRD图谱的衍射峰比纯PVDF-LiTFSI下降更为明显,电化学窗口为3.9 V左右,表现出更好的稳定性。在不同温度下分别测量其离子电导率发现,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时的电解质膜均高于纯PVDF-LiTFSI电解质膜和Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为2∶1和3∶1时的电解质膜。将其装配成电池后发现,0.1C下电池首次充放电比容量分别为90 m A·h/g和87 m A·h/g。以0.5C的电流循环25圈,放电比容量从57 mA·h/g衰减至51mA·h/g,容量保持率为99.7%。所以,以PVDF为基、Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1的固态电解质膜有优良的倍率性能和循环稳定性能。展开更多
基金the National Key R&D Program of China(Nos.2021YFE0104800 and 2023YFB3812000)the General Project of Shanghai Natural Science Foundation(No.22ZR1471500)+2 种基金the International Partnership Program of Chinese Academy of Sciences(No.121631KYSB20200039)the International Cooperation Project of Shanghai Science and Technology Commission(No.20520750200)and National Center for Research and Development(Contract No.WPC2/1/SCAPOL/2021).Partial work was also financially supported by the Hengdian Group.
文摘Faraday isolators can prevent the front-end system from disturbance and damage caused by a back-reflected beam,so they are important elements in laser systems.As magneto-optical materials are the most important component in Faraday isolators,the studies on magneto-optical materials have attracted much attention these years.Tb_(3)Al_(5)O_(12)(TAG)ceramics are considered to be one of the most promising magneto-optical materials for visible to near-infrared wavelength band application because of their outstanding comprehensive magneto-optical performance.However,the optical quality of TAG ceramics needs further optimization to meet the application requirements.In this work,high optical quality(Tb_(1−x)Y_(x))_(3)Al_(5)O_(12)(x=0,0.05,0.1,0.2,and 0.3)magneto-optical ceramics were fabricated successfully by solid-state reaction sintering combined with hot isostatic pressing(HIP)post-treatment.All the ceramics obtained showed a single garnet phase for different values of x in the range studied.The addition of Y_(2)O_(3) was found to suppress the secondary phase and improve optical quality significantly.The ceramic samples obtained had clear grain boundaries and possessed the in-line transmittance values of 82.9%at 1064 nm and 82.2%at 633 nm,respectively.The Verdet constants of(Tb_(1−x)Y_(x))_(3)Al_(5)O_(12)ceramics with x=0,0.05,0.1,0.2,and 0.3 were−188.1,−175.4,−168.5,−143.0,and−119.9 rad/(T·m),respectively.The thermal conductivity of TAG ceramics was found to be 5.23 W/(m·K)at 25℃,and when 20%Y was substituted in place of Tb,the thermal conductivity decreased by only 9.4%.
基金supported by the National Natural Science Foundation of China (Grant No. 51872327)。
文摘Recently, lanthanide-ion-doped luminescent materials have been extensively used as optical thermometry probes due to their fast responses, non-contact, and high sensitivity properties. Based on different responses of two emissions to temperature, the fluorescence intensity ratio(FIR) technique can be used to estimate the sensitivities for assessing the optical thermometry performances. In this study, we introduce different doping concentrations of Eu^(3+) ions into negative thermal expansion material Sc2W3O12to increase the thermal-enhanced luminescence from 373 K to 548 K, and investigate the temperature sensing properties in detail. All samples can exhibit their good luminescence behaviors thermally enhanced.The emission intensity of Sc2W3O12:6-mol% Eu3+phosphor reaches 147.8% of initial intensity at 473 K. As the Eu3+doping concentration increases, the resistance of the sample to thermal quenching decreases. The FIR technique based on each of the transitions 5D→7F_(1)(592 nm) and 5D→7F_(2)(613 nm) of Eu3+ions demonstrates a maximum relative temperature sensitivity of 3.063% K-1at 298 K for Sc_(2)W_(3)O_(12):6-mol% Eu3+phosphor. The sensitivity of sample decreases with the increase of Eu3+concentration. Benefiting from the thermal-enhanced luminescence performance and good temperature sensing properties, the Sc_(2)W_(3)O_(12):Eu^(3+)phosphors can be used as optical thermometers.
文摘NASICON型快离子导体Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)具有较高的离子电导率、较宽的电化学窗口及良好的水和空气稳定性,但其界面接触性能差。石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)锂离子电导率高、电化学窗口较宽且热稳定性好,但其立方相结构不稳定,影响其实际应用。采用溶液浇筑法,制备纯PVDF-LiTFSI电解质膜和以PVDF为基、3种不同质量比的Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)的固态电解质膜,并探讨纯PVDF-LiTFSI电解质膜和3种不同质量比的活性无机电解质填料对复合固态电解质离子电导率的影响。结果表明,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时,电解质膜的XRD图谱的衍射峰比纯PVDF-LiTFSI下降更为明显,电化学窗口为3.9 V左右,表现出更好的稳定性。在不同温度下分别测量其离子电导率发现,Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1时的电解质膜均高于纯PVDF-LiTFSI电解质膜和Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为2∶1和3∶1时的电解质膜。将其装配成电池后发现,0.1C下电池首次充放电比容量分别为90 m A·h/g和87 m A·h/g。以0.5C的电流循环25圈,放电比容量从57 mA·h/g衰减至51mA·h/g,容量保持率为99.7%。所以,以PVDF为基、Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)和Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)质量比为1∶1的固态电解质膜有优良的倍率性能和循环稳定性能。