本文首先给出integral from a to +∞f(x)dx收敛≠lim_(+∞) f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integral from a to +∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级...本文首先给出integral from a to +∞f(x)dx收敛≠lim_(+∞) f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integral from a to +∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integral from a to +∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integral from a to +∞f(x)dx收敛?lim_(?+∞)f(x)=0.这类错误较为普遍。展开更多
Let r be a positive integer. Let f(x, y) be a continuous function defined for 0≤x≤1, -∞<y<∞, and having continuous partial derivatives with respect to x, of order up to r, and periodic
文摘本文首先给出integral from a to +∞f(x)dx收敛≠lim_(+∞) f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integral from a to +∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integral from a to +∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integral from a to +∞f(x)dx收敛?lim_(?+∞)f(x)=0.这类错误较为普遍。
文摘Let r be a positive integer. Let f(x, y) be a continuous function defined for 0≤x≤1, -∞<y<∞, and having continuous partial derivatives with respect to x, of order up to r, and periodic