The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herei...The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herein,we report a novel Cd/TiO_(2) catalyst exhibiting a methanol selectivity of 81%,a CO_(2) conversion of 15.8%,and a CH_(4) selectivity below 0.7%.A combination of experimental and computational studies revealed that the unique electronic properties exhibited by the Cd clusters supported by the TiO_(2) matrix were responsible for the high selectivity of CO_(2) hydrogenation to methanol via the HCOO*pathway at the interfacial catalytic sites.展开更多
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnatio...Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.展开更多
Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR...Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.展开更多
The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalys...The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.展开更多
An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient im...An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient impregnation method.The result showed that Ni supported on anatase-rutile mixed phase TiO_(2)(91%Rut and 9%Ant,A2)provided the highest furfuryl alcohol yield at 43.8%due to the relatively strong Ni-TiO_(2)interaction,its appropriate crystallite sizes,and high average pore sizes.Furthermore,the effect of cobalt as a promoter on Ni/TiO_(2)-A2 catalysts was studied.The result showed that the Ni-Co/TiO_(2)-A2 catalysts exhibited poorer catalyst performances compared to the monometallic Ni/TiO_(2),probably because addition of cobalt can lower the reduction temperatures of Ni/TiO_(2)and weaken the metal-support interaction.展开更多
One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the s...One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the same crystal phase but different surface properties are chosen as supports to prepare Ni-based catalysts for CO_(2)reduction,which show distinctly different product selectivity for CO_(2)reduction to CH_(4) or CO,as well as the CO_(2)conversion.The catalysts based on the homemade TiO_(2)support are highly selective for CH_(4) formation,while the latter ones are about 100%selective for CO formation under the same reaction conditions.In addition,the former ones are much active(more than 3 times)than the latter ones.We found that the collaborative contribution of Ti^(3+)and Ni^(2+)species and the electronic metal-support interactions effect maybe the main driving force behind for determining the product selectivity.Methane is almost exclusively produced over the catalysts with abundant Ti^(3+)and Ni^(2+)species and greater electronic metal-support interaction,otherwise,it will give priority to CO generation.The addition of CeO_(2)can reduce the Ni particle size and improve the dispersion of Ni nanoparticles,as well as create more Ti^(3+)species,contributing to the enhancement of CO_(2)conversion,but shows a negligible effect on product selectivity.Furthermore,the in situ DRIFT experiments and kinetic experiments indicate that the CO route is probably involved in the CO_(2)reduction process over the homemade Ni-CeO_(2)/TiO_(2)-CO catalyst with abundant Ti^(3+)and Ni^(2+)species and a strong electronic transform effect.展开更多
文摘The conversion of CO_(2) to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO_(2).Herein,we report a novel Cd/TiO_(2) catalyst exhibiting a methanol selectivity of 81%,a CO_(2) conversion of 15.8%,and a CH_(4) selectivity below 0.7%.A combination of experimental and computational studies revealed that the unique electronic properties exhibited by the Cd clusters supported by the TiO_(2) matrix were responsible for the high selectivity of CO_(2) hydrogenation to methanol via the HCOO*pathway at the interfacial catalytic sites.
基金supported by the CAS (Chinese Academy of Sciences) Strategic Priority Research Program (XDA-21020500)。
文摘Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576122, 21646001, 21506080)Natural Science Foundation of Jiangsu Province (Nos. BK20150485, BK20170528)+2 种基金China Postdoctoral Science Foundation (2017M611727)Jiangsu Planned Projects for Postdoctoral Research Funds (1701104B)supported by the Student Innovation and Entrepreneurship Training Program (201810299332 W)
文摘Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.
基金supported by the National Natural Science Foundation of China (52274411)the National Natural Science Foundation of China (51904287)the Innovation Academy for Green Manufacture,Chinese Academy of Sciences (IAGM2022D11)。
文摘The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.
文摘An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient impregnation method.The result showed that Ni supported on anatase-rutile mixed phase TiO_(2)(91%Rut and 9%Ant,A2)provided the highest furfuryl alcohol yield at 43.8%due to the relatively strong Ni-TiO_(2)interaction,its appropriate crystallite sizes,and high average pore sizes.Furthermore,the effect of cobalt as a promoter on Ni/TiO_(2)-A2 catalysts was studied.The result showed that the Ni-Co/TiO_(2)-A2 catalysts exhibited poorer catalyst performances compared to the monometallic Ni/TiO_(2),probably because addition of cobalt can lower the reduction temperatures of Ni/TiO_(2)and weaken the metal-support interaction.
基金supported by the National Natural Science Foundation of China(No.51774159)the Open Project Program of the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2020-KF-25)the Qinglan Project of Kunming University of Science and Technology。
文摘One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the same crystal phase but different surface properties are chosen as supports to prepare Ni-based catalysts for CO_(2)reduction,which show distinctly different product selectivity for CO_(2)reduction to CH_(4) or CO,as well as the CO_(2)conversion.The catalysts based on the homemade TiO_(2)support are highly selective for CH_(4) formation,while the latter ones are about 100%selective for CO formation under the same reaction conditions.In addition,the former ones are much active(more than 3 times)than the latter ones.We found that the collaborative contribution of Ti^(3+)and Ni^(2+)species and the electronic metal-support interactions effect maybe the main driving force behind for determining the product selectivity.Methane is almost exclusively produced over the catalysts with abundant Ti^(3+)and Ni^(2+)species and greater electronic metal-support interaction,otherwise,it will give priority to CO generation.The addition of CeO_(2)can reduce the Ni particle size and improve the dispersion of Ni nanoparticles,as well as create more Ti^(3+)species,contributing to the enhancement of CO_(2)conversion,but shows a negligible effect on product selectivity.Furthermore,the in situ DRIFT experiments and kinetic experiments indicate that the CO route is probably involved in the CO_(2)reduction process over the homemade Ni-CeO_(2)/TiO_(2)-CO catalyst with abundant Ti^(3+)and Ni^(2+)species and a strong electronic transform effect.