Nanocrystalline titanium dioxide powder is characterized for phase analysis as well as particle size and its distribution by x-ray diffraction and small angle neutron scattering measurements. Analysis of the SANS data...Nanocrystalline titanium dioxide powder is characterized for phase analysis as well as particle size and its distribution by x-ray diffraction and small angle neutron scattering measurements. Analysis of the SANS data in the momentum transfer range q = 0.1 - 1.8 nm–1 reveals an average particle size of 24.82 nm in good agreement with the particle size determined earlier by transmission electron microscopy. XRD measurement proves co-existence of rutile and anatase phases in this commercial TiO2 nanocrystalline powder.展开更多
The effect of (Pt-loaded)TiO2 crystallite diameter (i.e. Scherrer size) on the photocatalytic water splitting rate was investigated. (Pt-loaded)TiO2 powders with a wide range of crystallite diameters from about 16 to ...The effect of (Pt-loaded)TiO2 crystallite diameter (i.e. Scherrer size) on the photocatalytic water splitting rate was investigated. (Pt-loaded)TiO2 powders with a wide range of crystallite diameters from about 16 to 45 nm with a blank region between about 23 and 41 nm were prepared by various annealing processes from an identical TiO2 powder. Water splitting experiments with these powders were carried out with methanol as an oxidizing sacrificial agent. It was found that the photocatalytic water splitting rate was sensitively affected by the crystallite diameter of the (Pt-loaded)TiO2 powder. More concretely, similar steep improvements of photocatalytic water splitting rates from around 15 and a little over 2 to about 30 μmol·m-2hr-1?were obtained in the two (Pt-loaded)TiO2 crystallite diameters ranging from 16 to 23 and from 41 to 45 nm, respectively.展开更多
Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizont...Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizontal stress.Understanding the relationship among strength,specimen size and rock petrographic parameters is essential for developing an effective ground control plan.Size effect studies have found that rock strength varies with specimen size.This paper attempts to understand this strength variation using three specimen sizes(254-mm,508-mm,and 762-mm).The specimen strength was measured and the major petrographic parameters affecting the strength,namely grain size,grain shape,quartz content,clay content,etc.were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The petrographic parameters were then correlated with the strength of the three differently sized specimens.The results showed that 508-mm specimen had the lowest strength.Quartz content of the 508-mm specimen was lower than that of 254-mm and 762-mm specimens.Clay content and average grain size of the 508-mm specimen were higher than those of 254-mm and 762-mm specimens.These results clearly show that grain size,quartz content and clay content contribute to strength variation observed in differently sized shale specimens.展开更多
Crystallinity refers to the degree of structural order in a solid and has a big influence on hardness, density, transparency and diffusion. Even within materials that are crystalline completely, the degree of structur...Crystallinity refers to the degree of structural order in a solid and has a big influence on hardness, density, transparency and diffusion. Even within materials that are crystalline completely, the degree of structural perfection can vary, reflecting size and elastic strain of many independent crystalline regions (grains or crystallites) of which these materials are composed. In this work it was attempted to reduce the crystallinity of human enamel using a technique of mechanical grinding (MG) with an ultra-compact FRITSCH Mini-Mill PULVERISETTE 23 machine. Variation in the crystallinity through the MG was monitored by X-ray diffraction (XRD) by broadening of the diffraction peak and examined using the Williamson-Hall plot method. Crystallites in human enamel are regularly arranged and oriented (in the [001] direction) perpendicularly to the interface of enameldentin junction. The results showed an anisotropic feature in crystallinity. Reduction of the crystallinity along the a-axis is due to the crystal strain rather than to the refinement of crystal, and vice versa along the c-axis. After 230 h of the MG, the length of crystallites decreased from 100 nm to 30 nm and width from 40 nm to 37 nm approximately.展开更多
25 samples of nanometer TiO2 were prepared through modifying the preparation conditions including the concentrations of Ti(SO4)2 and NH4HCO3, the pH value at the end of precipitation operation, and sintering temperatu...25 samples of nanometer TiO2 were prepared through modifying the preparation conditions including the concentrations of Ti(SO4)2 and NH4HCO3, the pH value at the end of precipitation operation, and sintering temperature and time by methods of orthogonal design. The relationships between their catalytic activities of photocatalytic degradation of sodium dodecyl benzene sulfonate (SDBS) and the normal crystallite size, lattice-strain and X-ray diffraction intensity of 10 crystal faces were analyzed. It was discovered that the photocatalytic degradation reaction of SDBS follows first-order kinetics. Crystal faces of catalysts' (101) have greater influence than other crystal faces on the reaction. The photocatalytic reaction needs more perfect (101) crystal faces with less lattice-strain. Smaller normal crystallite size and greater specific surface area of (101) crystal face are better for increasing reaction rate. The photocatalytic reaction is mainly proceeded on the (101) crystal face, comparatively, amorphous TiO2 has lower catalytic activity.展开更多
CdS nanoclusters were synthesized by using n-octylthiol as a ligand and n-hexadecyltrimethyl-ammonium bromide (or n-tetrabutylammonium bromide) as an organic cation. Sizeselective precipitation techniques have enabled...CdS nanoclusters were synthesized by using n-octylthiol as a ligand and n-hexadecyltrimethyl-ammonium bromide (or n-tetrabutylammonium bromide) as an organic cation. Sizeselective precipitation techniques have enabled the preparation of different CdS Q-nanoparticles with narrow size distribution and mean diameters ranging from 2 to 5 nm. UV-Vis spectroscopy, transmission electron microscopy and small-angle X-ray scattering were used to determine the mean cluster size. Their size quantization effect has been observed in UV-Vis spectra, fluorescence spectra and small-angle X-ray diffraction, but it became too weak to be observed for large particles (2r > 10 nm). Moreover, their photo-catalysis has been studied by ESR technique and the results revealed that the photo-catalytic reaction occurred in the solution system and some free radicals such as CH2-OH in methanol, or CH3-CH-OH in ethanol were generated if some CdS Q-particles were added to methanol (or ethanol) and initiated by UV light at the same time, which may be very crucial in organic synthesis.展开更多
Studies on mineral Chinese medicine Xuan Jing Shi were made by means of XRD, SEM, ICP, TG and DSC. The mineral′s phase, crystal size, surface shape, elemental content and thermal dissolution were determined. The resu...Studies on mineral Chinese medicine Xuan Jing Shi were made by means of XRD, SEM, ICP, TG and DSC. The mineral′s phase, crystal size, surface shape, elemental content and thermal dissolution were determined. The results indicate that Xuan Jing Shi is mainly made up of CaSO_ 4·2H_ 2O. Its particle shape is slice and the particles pile up closely. The crystal size was 31.1 nm and the surface area 8.9× 10 5 cm 2/g. When heated, two water molecules were losted in one step. There are plenty of trace elements Zn, Mn, Co, Cu, Mo in Xuan Jing Shi. Above results may serve as a base for quality evaluation of the medicine.展开更多
文摘Nanocrystalline titanium dioxide powder is characterized for phase analysis as well as particle size and its distribution by x-ray diffraction and small angle neutron scattering measurements. Analysis of the SANS data in the momentum transfer range q = 0.1 - 1.8 nm–1 reveals an average particle size of 24.82 nm in good agreement with the particle size determined earlier by transmission electron microscopy. XRD measurement proves co-existence of rutile and anatase phases in this commercial TiO2 nanocrystalline powder.
文摘The effect of (Pt-loaded)TiO2 crystallite diameter (i.e. Scherrer size) on the photocatalytic water splitting rate was investigated. (Pt-loaded)TiO2 powders with a wide range of crystallite diameters from about 16 to 45 nm with a blank region between about 23 and 41 nm were prepared by various annealing processes from an identical TiO2 powder. Water splitting experiments with these powders were carried out with methanol as an oxidizing sacrificial agent. It was found that the photocatalytic water splitting rate was sensitively affected by the crystallite diameter of the (Pt-loaded)TiO2 powder. More concretely, similar steep improvements of photocatalytic water splitting rates from around 15 and a little over 2 to about 30 μmol·m-2hr-1?were obtained in the two (Pt-loaded)TiO2 crystallite diameters ranging from 16 to 23 and from 41 to 45 nm, respectively.
文摘Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizontal stress.Understanding the relationship among strength,specimen size and rock petrographic parameters is essential for developing an effective ground control plan.Size effect studies have found that rock strength varies with specimen size.This paper attempts to understand this strength variation using three specimen sizes(254-mm,508-mm,and 762-mm).The specimen strength was measured and the major petrographic parameters affecting the strength,namely grain size,grain shape,quartz content,clay content,etc.were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The petrographic parameters were then correlated with the strength of the three differently sized specimens.The results showed that 508-mm specimen had the lowest strength.Quartz content of the 508-mm specimen was lower than that of 254-mm and 762-mm specimens.Clay content and average grain size of the 508-mm specimen were higher than those of 254-mm and 762-mm specimens.These results clearly show that grain size,quartz content and clay content contribute to strength variation observed in differently sized shale specimens.
文摘Crystallinity refers to the degree of structural order in a solid and has a big influence on hardness, density, transparency and diffusion. Even within materials that are crystalline completely, the degree of structural perfection can vary, reflecting size and elastic strain of many independent crystalline regions (grains or crystallites) of which these materials are composed. In this work it was attempted to reduce the crystallinity of human enamel using a technique of mechanical grinding (MG) with an ultra-compact FRITSCH Mini-Mill PULVERISETTE 23 machine. Variation in the crystallinity through the MG was monitored by X-ray diffraction (XRD) by broadening of the diffraction peak and examined using the Williamson-Hall plot method. Crystallites in human enamel are regularly arranged and oriented (in the [001] direction) perpendicularly to the interface of enameldentin junction. The results showed an anisotropic feature in crystallinity. Reduction of the crystallinity along the a-axis is due to the crystal strain rather than to the refinement of crystal, and vice versa along the c-axis. After 230 h of the MG, the length of crystallites decreased from 100 nm to 30 nm and width from 40 nm to 37 nm approximately.
文摘25 samples of nanometer TiO2 were prepared through modifying the preparation conditions including the concentrations of Ti(SO4)2 and NH4HCO3, the pH value at the end of precipitation operation, and sintering temperature and time by methods of orthogonal design. The relationships between their catalytic activities of photocatalytic degradation of sodium dodecyl benzene sulfonate (SDBS) and the normal crystallite size, lattice-strain and X-ray diffraction intensity of 10 crystal faces were analyzed. It was discovered that the photocatalytic degradation reaction of SDBS follows first-order kinetics. Crystal faces of catalysts' (101) have greater influence than other crystal faces on the reaction. The photocatalytic reaction needs more perfect (101) crystal faces with less lattice-strain. Smaller normal crystallite size and greater specific surface area of (101) crystal face are better for increasing reaction rate. The photocatalytic reaction is mainly proceeded on the (101) crystal face, comparatively, amorphous TiO2 has lower catalytic activity.
文摘CdS nanoclusters were synthesized by using n-octylthiol as a ligand and n-hexadecyltrimethyl-ammonium bromide (or n-tetrabutylammonium bromide) as an organic cation. Sizeselective precipitation techniques have enabled the preparation of different CdS Q-nanoparticles with narrow size distribution and mean diameters ranging from 2 to 5 nm. UV-Vis spectroscopy, transmission electron microscopy and small-angle X-ray scattering were used to determine the mean cluster size. Their size quantization effect has been observed in UV-Vis spectra, fluorescence spectra and small-angle X-ray diffraction, but it became too weak to be observed for large particles (2r > 10 nm). Moreover, their photo-catalysis has been studied by ESR technique and the results revealed that the photo-catalytic reaction occurred in the solution system and some free radicals such as CH2-OH in methanol, or CH3-CH-OH in ethanol were generated if some CdS Q-particles were added to methanol (or ethanol) and initiated by UV light at the same time, which may be very crucial in organic synthesis.
文摘Studies on mineral Chinese medicine Xuan Jing Shi were made by means of XRD, SEM, ICP, TG and DSC. The mineral′s phase, crystal size, surface shape, elemental content and thermal dissolution were determined. The results indicate that Xuan Jing Shi is mainly made up of CaSO_ 4·2H_ 2O. Its particle shape is slice and the particles pile up closely. The crystal size was 31.1 nm and the surface area 8.9× 10 5 cm 2/g. When heated, two water molecules were losted in one step. There are plenty of trace elements Zn, Mn, Co, Cu, Mo in Xuan Jing Shi. Above results may serve as a base for quality evaluation of the medicine.