The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and p...The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.展开更多
In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion ...In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.展开更多
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and th...We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.展开更多
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approxima...We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.展开更多
Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of e...Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.展开更多
So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on th...So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on their observed spin-up variations and luminosities.We obtain two branches of dipole magnetic field solutions.They are distributed in the range of B-(0.156-64.5) × 10^(10) G and-(0.275-79.0) × 10^(13) G corresponding to the low-and high-B solutions respectively.The low magnetic field solutions correspond to the state that the neutron stars are far away from the spin equilibrium,and the high magnetic field solutions are close to the spin equilibrium.The ultra-strong magnetic fields derived in Be-type ULX pulsars imply that the accretion mode in Be-type ULX pulsars could be more complicated than in the persistent ULX pulsars and may not be accounted for by the magnetized accretion disk model.We suggest that the transition between the accretor and the propeller regimes may be used to distinguish between the low-and high-B magnetic field solutions in addition to the detection of the cyclotron resonance scattering features.展开更多
Accreting millisecond X-ray pulsars(AMXPs) are an important subclass of low-mass X-ray binaries(LMXBs), in which coherent millisecond X-ray pulsations can be observed during outburst states.They have dual characterist...Accreting millisecond X-ray pulsars(AMXPs) are an important subclass of low-mass X-ray binaries(LMXBs), in which coherent millisecond X-ray pulsations can be observed during outburst states.They have dual characteristics of LMXBs and millisecond pulsars, providing a direct confirmation for the recycling scenario. However, their formation is not well understood. In this work, we simulate the evolution of LMXBs with the MESA code to explore the formation and evolution of AMXPs. Based on the binary evolutionary model of LMXBs and the model of accretion disk instability, we find that most of the observed AMXPs can be produced from LMXBs with orbital periods at the onset of Roche lobe overflow close to the bifurcation period and their observed properties can be explained by our models. The AMXPs with main sequence(MS) donors ultimately evolve into AMXPs with extremely low-mass He white dwarf donors.Moreover, our results indicate that these AMXPs with MS donors are likely to have donor stars near the terminal-age main sequence.展开更多
The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-N...The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).展开更多
We report the results of a search for radio pulsars in five supernova remnants(SNRs)with the FAST telescope.The observations were made using the 19-beam receiver in“snapshot”mode.The integration time for each pointi...We report the results of a search for radio pulsars in five supernova remnants(SNRs)with the FAST telescope.The observations were made using the 19-beam receiver in“snapshot”mode.The integration time for each pointing was 10 min.We discovered a new pulsar,PSR J1845–0306,which has a spin period of 983.6 ms and a dispersion measure of 444.6±2.0 cm^(−3)·pc,in observations of SNR G29.6+0.1.To judge the association between the pulsar and the SNR,further verification is needed.We also re-detected some known pulsars in the data from SNRs G29.6+0.1 and G29.7–0.3.No pulsars were detected in the observations of the other three SNRs.展开更多
We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the e...We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the emission does not cease across the whole pulse profile,and(ii)the emission is detectable.For(i),we adopt a model for switching in the plasma charge density,and emission persists if the charge density is non-zero.For(ii),we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight.We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42°.5,and almost half the samples maintain a duty cycle between 0.05 and 0.2.Furthermore,the pulsar population is not fixed but dependent on the obliquity angle,with the population peaking at 20°.In addition,three evolutionary phases are identified in the pulsar population as the obliquity angle evolves,with the majority of samples having an obliquity angle between 20°and 65°.Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.展开更多
Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We...Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We show that theγ-ray luminosity(L_(γ))and emissivity(i.e.,ε_(γ)=L_(γ)/M,with M the cluster mass)are good indicators of the population and abundance of MSPs in GlCs,and they are highly dependent on the dynamical evolution history of the host clusters.Specifically speaking,the dynamically older GlCs with more compact structures are more likely to have larger L_(γ)andε_(γ),and these trends can be summarized as strong correlations with cluster stellar encounter rateΓand the specific encounter rate(Λ=Γ/M),with L_(γ)∝Γ^(0.7±0.11)andε_(γ)∝Λ^(0.73±0.13)for dynamically normal GlCs.However,as GlCs evolve into deep core collapse,these trends are found to be reversed,implying that strong encounters may have lead to the disruption of Low-Mass X-ray Binaries and ejection of MSPs from core-collapsed systems.Besides,the GlCs are found to exhibit largerε_(γ)with increasing stellar mass function slope(ε_(γ)∝10^((0.52±0.1)α)),decreasing tidal radius(ε_(γ)∝R_(t)^(-10±0.22))and distances from the Galactic Center(GC,ε_(γ)∝R_(gc)^(-1.13±0.21)).These correlations indicate that,as GlCs losing kinetic energy and spiral in toward the GC,tidal stripping and mass segregation have a preference in leading to the loss of normal stars from GlCs,while MSPs are more likely to concentrate to cluster center and be deposited into the GC.Moreover,we gaugeε_(γ)of GlCs is~10-1000 times larger than the Galactic bulge,the latter is thought to reside thousands of unresolved MSPs and may be responsible for the GC 7-ray excess,which supports that GlCs are generous contributors to the population of MSPs in the GC.展开更多
The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to sol...The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.展开更多
Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beam...Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magneto...Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.展开更多
文摘The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.
基金the Ethiopian Space Science and Technology InstituteEntoto Observatory and Research CenterAstronomy and Astrophysics Research and Development Department for supporting this research。
文摘In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.
基金Supported by the National Natural Science Foundation of China
文摘We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.
文摘We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.
基金Supported by the National Natural Science Foundation of China
文摘Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.
基金supported by the National Key Research and Development Program of China (2016YFA0400803)the National Natural Science Foundation of China under grant Nos.11773015 and 10241301Project U1838201 supported by NSFC and CAS。
文摘So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on their observed spin-up variations and luminosities.We obtain two branches of dipole magnetic field solutions.They are distributed in the range of B-(0.156-64.5) × 10^(10) G and-(0.275-79.0) × 10^(13) G corresponding to the low-and high-B solutions respectively.The low magnetic field solutions correspond to the state that the neutron stars are far away from the spin equilibrium,and the high magnetic field solutions are close to the spin equilibrium.The ultra-strong magnetic fields derived in Be-type ULX pulsars imply that the accretion mode in Be-type ULX pulsars could be more complicated than in the persistent ULX pulsars and may not be accounted for by the magnetized accretion disk model.We suggest that the transition between the accretor and the propeller regimes may be used to distinguish between the low-and high-B magnetic field solutions in addition to the detection of the cyclotron resonance scattering features.
基金supported by the National Natural Science Foundation of China (Nos. 11473063, 11522327, 11703081 and 11733008)Yunnan Foundation (Nos. 2015HB096 and 2017HC018)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS)the CAS light of West China Program and CAS (No. KJZD-EW-M06-01)
文摘Accreting millisecond X-ray pulsars(AMXPs) are an important subclass of low-mass X-ray binaries(LMXBs), in which coherent millisecond X-ray pulsations can be observed during outburst states.They have dual characteristics of LMXBs and millisecond pulsars, providing a direct confirmation for the recycling scenario. However, their formation is not well understood. In this work, we simulate the evolution of LMXBs with the MESA code to explore the formation and evolution of AMXPs. Based on the binary evolutionary model of LMXBs and the model of accretion disk instability, we find that most of the observed AMXPs can be produced from LMXBs with orbital periods at the onset of Roche lobe overflow close to the bifurcation period and their observed properties can be explained by our models. The AMXPs with main sequence(MS) donors ultimately evolve into AMXPs with extremely low-mass He white dwarf donors.Moreover, our results indicate that these AMXPs with MS donors are likely to have donor stars near the terminal-age main sequence.
文摘The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).
基金supported by the National SKA Program of China (Grant No. 2020SKA0120200)the National Natural Science Foundation of China (Grant Nos. 12041303, 12273100, 12041304, and 12288102)+5 种基金the National Key R&D Program of China (Grant No. 2022YFC2205201)the West Light Foundation of the Chinese Academy of Sciences (Grant No. WLFC 2021-XBQNXZ-027)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region (Grant No. 2022A03013-4)the Natural Science Foundation of Xinjiiang Uygur Autonomous Region (Grant No. 2022D01D85)the open program of the Key Laboratory of Xinjiang Uygur Autonomous Region (Grant No. 2020D04049)partly supported by the Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments, budgeted from the Ministry of Finance of China and administrated by the CAS
文摘We report the results of a search for radio pulsars in five supernova remnants(SNRs)with the FAST telescope.The observations were made using the 19-beam receiver in“snapshot”mode.The integration time for each pointing was 10 min.We discovered a new pulsar,PSR J1845–0306,which has a spin period of 983.6 ms and a dispersion measure of 444.6±2.0 cm^(−3)·pc,in observations of SNR G29.6+0.1.To judge the association between the pulsar and the SNR,further verification is needed.We also re-detected some known pulsars in the data from SNRs G29.6+0.1 and G29.7–0.3.No pulsars were detected in the observations of the other three SNRs.
基金supported by the National SKA Program of China No.2020SKA0120200the National Key Program for Science and Technology Research and Development No.2022YFC2205201+2 种基金the National Natural Science Foundation of China(NSFC,grant Nos.12288102,12041303,and 12041304)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region No.2022A03013-2the open program of the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049。
文摘We investigate the population and several properties of radio pulsars whose emission does not null(non-nulling)through simulation of a large pulsar sample.Emission from a pulsar is identified as non-nulling if(i)the emission does not cease across the whole pulse profile,and(ii)the emission is detectable.For(i),we adopt a model for switching in the plasma charge density,and emission persists if the charge density is non-zero.For(ii),we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight.We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42°.5,and almost half the samples maintain a duty cycle between 0.05 and 0.2.Furthermore,the pulsar population is not fixed but dependent on the obliquity angle,with the population peaking at 20°.In addition,three evolutionary phases are identified in the pulsar population as the obliquity angle evolves,with the majority of samples having an obliquity angle between 20°and 65°.Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.
基金supported by the Youth Program of the National Natural Science Foundation of China No.12003017。
文摘Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We show that theγ-ray luminosity(L_(γ))and emissivity(i.e.,ε_(γ)=L_(γ)/M,with M the cluster mass)are good indicators of the population and abundance of MSPs in GlCs,and they are highly dependent on the dynamical evolution history of the host clusters.Specifically speaking,the dynamically older GlCs with more compact structures are more likely to have larger L_(γ)andε_(γ),and these trends can be summarized as strong correlations with cluster stellar encounter rateΓand the specific encounter rate(Λ=Γ/M),with L_(γ)∝Γ^(0.7±0.11)andε_(γ)∝Λ^(0.73±0.13)for dynamically normal GlCs.However,as GlCs evolve into deep core collapse,these trends are found to be reversed,implying that strong encounters may have lead to the disruption of Low-Mass X-ray Binaries and ejection of MSPs from core-collapsed systems.Besides,the GlCs are found to exhibit largerε_(γ)with increasing stellar mass function slope(ε_(γ)∝10^((0.52±0.1)α)),decreasing tidal radius(ε_(γ)∝R_(t)^(-10±0.22))and distances from the Galactic Center(GC,ε_(γ)∝R_(gc)^(-1.13±0.21)).These correlations indicate that,as GlCs losing kinetic energy and spiral in toward the GC,tidal stripping and mass segregation have a preference in leading to the loss of normal stars from GlCs,while MSPs are more likely to concentrate to cluster center and be deposited into the GC.Moreover,we gaugeε_(γ)of GlCs is~10-1000 times larger than the Galactic bulge,the latter is thought to reside thousands of unresolved MSPs and may be responsible for the GC 7-ray excess,which supports that GlCs are generous contributors to the population of MSPs in the GC.
文摘The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.11988101 and 11833009),supported by the National Natural Science Foundation of China(NSFC,grant No.U2031115)supported by the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)+1 种基金National Natural Science Foundation of China(NSFC,grant Nos.11873058 and 12133004)the National SKA program of China(No.2020SKA0120200)。
文摘Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金supported by NASA Goddard Space Flight Center through Cooperative Agreement 80NSSC21M0180 to Catholic UniversityPartnership for Heliophysics and Space Environment Research(PHaSER)+2 种基金the NASA Heliophysics United States Participating Investigator Program under Grant WBS516741.01.24.01.03(DS)support from the NASA grants 80NSSC19K0844,80NSSC20K1670,and 80MSFC20C0019the NASA GSFC internal fundings(HIF,ISFM,and IRAD)。
文摘Variability in the location and shape of the dayside magnetopause is attributed to magnetic reconnection,a fundamental process that enables the transfer of mass,energy,and momentum from the solar wind into the magnetosphere.The spatial and temporal properties of the magnetopause,under varying solar and magnetospheric conditions,remain largely unknown because empirical studies using in-situ observations are challenging to interpret.Global wide field-of-view(FOV)imaging is the only means to simultaneously observe the spatial distribution of the plasma properties over the vast dayside magnetospheric region and,subsequently,quantify the energy transport from the interplanetary medium into the terrestrial magnetosphere.Two upcoming missions,ESA/CAS SMILE and NASA’s LEXI will provide wide-field imagery of the dayside magnetosheath in soft X-rays,an emission generated by charge exchange interactions between high charge-state heavy ions of solar wind origin and exospheric neutral atoms.High-cadence two-dimensional observations of the magnetosheath will allow the estimation of dynamic properties of its inner boundary,the magnetopause,and enable studies of its response to changes in the solar wind dynamic pressure and interplanetary magnetic field orientation.This work introduces a statistically-based estimation approach based on inverse theory to estimate the spatial distribution of magnetosheath soft X-ray emissivities and,with this,identify the location of the magnetopause over the Sun−Earth line.To do so,we simulate the magnetosheath structure using the MHD-based OpenGGCM model and generate synthetic soft X-ray images using LEXI’s orbit and attitude information.Our results show that 3-D estimations using the described statistically-based technique are robust against Poisson-distributed shot noise inherent to soft X-ray images.Also,our proposed methodology shows that the accuracy of both three-dimensional(3-D)estimation and the magnetopause standoff distance calculation highly depends on the observational point.